Besides Saving the Planet, Renewable Resources for Electricity Can Improve Life in Other Ways

While we may think “less pollution” and “reduced carbon emissions” when we think of switching from fossil fuels to renewable energy sources for electricity generation, there’s a lot more sizzle in the switch. The benefits span the spectrum from improved public health and economic and job growth to abundant energy supplies and more stable prices.
On their website (ucsusa.org) The Union of Concerned Scientists presents scientific evidence as well as relatable examples of the impacts of global warming. Also presented are solutions—including those at the individual, community, legislative and societal levels—that are implemented, planned and pending.
Here are highlights (with immaterial edits for brevity) from UCS findings on the benefits of moving from electricity generated from fossil fuels to infinite resources such as solar, wind and geothermal. In future blogs, we’ll share other enlightening scientific findings from the UCS. Visit their site for detailed stories, reports and publications, as well as information sources, on this and other aspects of global warming caused by carbon emissions.
Less Global Warming
In the U.S., about 29 percent of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels such as coal and natural gas.
Carbon dioxide is the most prevalent greenhouse gas, but other air pollutants such as methane also cause global warming. Different energy sources produce differing amounts of these pollutants. To make comparisons easier, they use a carbon dioxide equivalent—or CO2e—the amount of carbon dioxide required to produce an equivalent amount of warming.
Most renewable energy sources produce little to no global warming emissions. Even when including “life cycle” emissions of clean energy (emissions from each stage of a technology’s life—manufacturing, installation, operation, decommissioning), the global warming emissions associated with renewable energy are minimal.
Look at the numbers: natural gas for electricity releases between 0.6 and 2 pounds of carbon dioxide equivalent per kilowatt-hour (CO2E/kWh); coal emits between 1.4 and 3.6 pounds of CO2E/kWh. Wind is responsible for only 0.02 to 0.04 pounds of CO2E/kWh on a life-cycle basis; solar 0.07 to 0.2; geothermal 0.1 to 0.2; and hydroelectric between 0.1 and 0.5.
Renewable energy could help reduce the electricity sector’s global warming emissions by approximately 81 percent.
Improved Public Health
The air and water pollution emitted by coal and natural gas plants is linked with breathing problems, neurological damage, heart attacks, cancer, premature death and a host of other serious problems. The pollution affects everyone: one Harvard University study estimated the life cycle costs and public health effects of coal to be $74.6 billion every year. That’s equivalent to 4.36 cents per kilowatt-hour of electricity produced—about one-third of the average electricity rate for a typical U.S. home.
Most of the negative health impacts come from air and water pollution that clean energy technologies simply don’t produce. Wind, solar and hydroelectric systems generate electricity with no associated air pollution emissions. Geothermal and biomass systems emit some air pollutants, though total air emissions are generally much lower than those of coal- and natural gas-fired power plants.
Wind and solar energy require essentially no water to operate so they do not pollute water resources or strain supplies by competing with agriculture, drinking water or other important water needs. Fossil fuels can have a significant impact on water resources: both coal mining and natural gas drilling can pollute sources of drinking water, and all thermal power plants—including those powered by coal, gas and oil—consume water for cooling.
Inexhaustible Energy Supply
Strong winds, sunny skies, abundant plant matter, heat from the earth and fast-moving water can each provide a vast and constantly replenished supply of energy. A relatively small fraction of U.S. electricity currently comes from these sources, but that could change: studies have repeatedly shown that renewable energy can provide a significant share of future electricity needs, even after accounting for potential constraints.
A study by the Energy Department’s National Renewable Energy Laboratory (NREL) found that renewable energy could comfortably provide up to 80 percent of U.S. electricity by 2050.
Jobs and Other Economic Benefits
Fossil fuel technologies are typically mechanized and capital intensive. The renewable energy industry is more labor intensive. Solar panels need humans to install them; wind farms need technicians for maintenance. That means that on average more jobs are created for each unit of electricity generated from renewable sources than from fossil fuels.
In 2016, the solar industry employed more than 260,000 people, including jobs in solar installation, manufacturing, and sales, a 25% increase over 2015. The hydroelectric power industry employed approximately 66,000 people in 2017; the geothermal industry employed 5,800 people. In contrast, the entire coal industry employed 160,000 people in 2016.
Increased support for renewable energy could create even more jobs. The 2009 Union of Concerned Scientists study of a 25-percent-by-2025 renewable energy standard found that such a policy would create more than three times as many jobs (more than 200,000) as producing an equivalent amount of electricity from fossil fuels. In addition to the jobs directly created in the renewable energy industry, growth in clean energy can create positive economic “ripple” effects. For example, industries in the renewable energy supply chain will benefit, and unrelated local businesses will benefit from increased household and business incomes.
Local governments also benefit from clean energy, most often in the form of property and income taxes and other payments from renewable energy project owners. Also, farmers and rural landowners can generate new sources of supplemental income by producing feedstocks for biomass power facilities.
UCS analysis found that a 25-by-2025 national renewable electricity standard would stimulate $263.4 billion in new capital investment for renewable energy technologies, $13.5 billion in new landowner income from biomass production and/or wind land lease payments, and $11.5 billion in new property tax revenue for local communities.
Stable Energy Prices
Renewable energy is providing affordable electricity across the country right now and can help stabilize energy prices in the future.
Although renewable facilities require upfront investments to build, they can then operate at very low cost (the “fuel” is free for most clean energy technologies). As a result, renewable energy prices can be very stable over time. In contrast, fossil fuel prices can vary dramatically and are prone to substantial price swings. For example, there was a rapid increase in U.S. coal prices due to rising global demand before 2008, then a rapid fall after 2008 when global demand declined. Likewise, natural gas prices have fluctuated greatly since 2000.
The average price to install solar dropped more than 70 percent between 2010 and 2017. The cost of generating electricity from wind dropped 66 percent between 2009 and 2016. Costs will likely decline even further as markets mature and companies increasingly take advantage of economies of scale.
Reliability and Resilience
Wind and solar are less prone to large-scale failure because they are distributed and modular. Distributed systems are spread out over a large geographical area, so a severe weather event in one location will not cut off power to an entire region. Modular systems are composed of numerous individual wind turbines or solar arrays. If some of the equipment in the system is damaged, the rest can typically continue to operate.
Water scarcity is another risk for non-renewable power plants. Coal, nuclear and many natural gas plants depend on having sufficient water for cooling. And that means that severe droughts and heat waves can put electricity generation at risk. Wind and solar photovoltaic systems do not require water to generate electricity and can operate reliably in conditions that may otherwise require closing a fossil fuel-powered plant.
The risk of disruptive events will also increase in the future as droughts, heat waves, more intense storms and increasingly severe wildfires become more frequent due to global warming—increasing the need for resilient, clean technologies.