GreenThink Blog

Our GreenThink blog shares design and building techniques, trends and innovations that maximize energy efficiency, save money, create homes that are more durable and have better air quality, and protect the environment.

Discovering more benefits of Passive House design and building strategies
Posted November 25, 2020 by Rob Nicely

We’ve just come through one of the most devasting fire seasons in California history. Besides putting an exclamation point on hotter, dryer conditions worsened by the effects of climate change, it presents real opportunities for us to examine how we design and build homes and other structures. And it raises awareness of our ability to create fire resistant homes and protect occupants from harmful smoke that impairs indoor air quality. While we may not be able to make homes fire proof, Building Science shows us that we have the strategies and know-how to mitigate the destruction and protect occupants from the dangers of poor indoor air quality. And we can build in a way that increases energy-efficiency and decreases carbon emissions that lead to climate change.

The key principles of Passive House—an airtight building envelope, thorough insulation, high-performance windows and a mechanical ventilation system that provides continuous fresh, filtered air—also have proven to be powerful tools in decreasing exposure to damage.

One thing I’ve learned and am grateful for throughout this process is the number of people who add to our knowledge base. This provides some comfort that, while there’s a tremendous amount of work to be done, we’re finally starting to see a change in the public’s mindset and acceptance of the science behind climate change.

The October 29 Zoom meeting of the Monterey Bay Regional Climate Action Compact featured a presentation by Lucas Johnson, building scientist and Certified Passive House Consultant. Lucas worked with us on the Carmel Valley home we opened to the public in January. The interior was unfinished so that people could see the key elements of Passive House building strategies. During the Carmel fire, some nearby homes were destroyed while this home was unharmed. This experience inspired us to further examine the additional benefits of building Passive House level homes, and retrofitting existing structures.

Lucas’ presentation—The World Beyond Conventional—not only solidified my commitment to embracing evolving building science, it also inspired me and expanded my thinking. He views green building as a social movement, not just an environmental movement and sees good building as important as high-performance. He espouses the idea of science as the foundation of unbiased knowledge rather than relying on our entrenched belief systems.

I hope you will take some time to watch his presentation as he shares some great insights into Wildfires, Buildings and Indoor Air Quality. If you have questions, please send an email to

Innovative options for bumping up the supply of affordable housing in California
Posted October 7, 2020 by Rob Nicely

There’s no doubt that a lack of affordable housing in many areas of California is a serious, longstanding challenge. But things they are a changin’. A new California law, effective January 1, 2020, paves the way for development of Accessory Dwelling Units (ADUs) and Junior Accessory Dwelling Units (JADUs). You may be more familiar with terms like the granny flat, in-law unit, guest house or backyard cottage (ADU) or separate living space within a home (JADU). The fact is that a home by any name is still a home. ADUs and JADUs offer affordable, effective options for cities, counties and homeowners to boost the availability of housing.

Like any structure, ADUs can be designed and built to evidence-based, high-performance standards that make them more durable and energy efficient, with healthy indoor air quality and lower carbon emissions.

According to the California Home and Community Development Department, some of the benefits of ADUs include:

  • Affordability – ADUs are an affordable type of housing to construct in California because they do not require paying for land, major new infrastructure, structured parking or elevators.
  • Income source – ADUs can provide a source of income for homeowners.
  • Cost-effectiveness – ADUs are typically built with wood frame construction while multifamily buildings often require more expensive steel construction.
  • Option for extended families – ADUs allow extended families to live close by while affording privacy.
  • Expanded living space – ADUs can provide as much living space as many newly constructed apartments and condominiums, and they’re suited well for couples, small families, young people and seniors.
  • Flexibility – ADUs give homeowners the flexibility to share independent living areas with family members and others, allowing seniors to age in place as they require more care.

And there’s more.

The JADU, a relative of the ADU, can be created within the walls of an existing or new single-family home with no more than 500 square feet—about the size of a typical apartment in many areas. JADUs may share central systems like heating, cooling and water, contain a basic kitchen utilizing small plug-in appliances or share a bathroom with the primary dwelling, significantly reducing development costs. These units present little additional stress on utility services and infrastructure because they essentially repurpose existing space within a residence and don’t expand the dwelling’s planned occupancy. For example, adding a kitchenette to a space that once served as a room for a child that has grown and moved out, can make it suitable to be occupied by a renter or senior family member.

To promote development of ADUS and JADUs, the Legislature added provisions including allowing them to be built concurrently with a single-family dwelling, opening areas where ADUs can be created to include all zoning districts that allow single-family and multifamily uses, modifying fees from utilities such as special districts and water corporations, limited exemptions or reductions in impact fees, and reduced parking requirements.

As of January 1, 2019, homeowners who created accessory dwelling units without the required building permits may have the opportunity to bring their ADUs into compliance. For ADUs that were constructed without building permits, local building officials now have the option to inspect an ADU and apply the building standards that were in effect at the time the unit was constructed.

Click Here to visit the HCD site for additional information. You’re also welcome to contact me by sending an email to

Just me, thinking out loud
Posted July 21, 2020 by Rob Nicely

Anyone who has read a blog, sat in on one of my presentations or been a client of Carmel Building & Design knows that I’m passionate about evidence-based, high-performance building. The passion stems from a desire to take what I’ve learned about human impact on the environment over the past 25-plus years and apply it to my chosen profession. But, it’s not just a way to satisfy my need to address the larger issues that come with being environmentally mindful. It’s also a way to meet the needs of homeowners—like the need for healthier indoor air quality, quiet, durability, and energy and water conservation. And in the end, building in a way that’s better for the home’s occupants is also better for the planet.

These are not conclusions or practices that I’ve come to easily, nor alone. There are many forward thinkers who have contributed to the wealth of knowledge that’s available today. Often, it’s a matter of trying things, taking steps then looking back to see if something can be improved to achieve an even better result. I admit that looking at the BIG picture can be overwhelming and trying to address all the problems out there can quickly stamp out the flame of activism. It’s important to start small, and start smart. Notice that START is the operative word.

Another realization I’ve come to is that it’s crucial to celebrate and take pride in every achievement regardless of scope or size. Sometimes I expend too much effort thinking about what I haven’t yet done versus what I’ve been able to accomplish. Every step we take in the right direction is reason for joy…nothing motivates most of us like the sense of having done something right, something good.

The reasons we decide to adopt a more planet friendly, sustainable lifestyle don’t matter as much as the decision itself. One person might want healthier indoor air quality because there’s asthma or allergies in the family. Another might be looking to build or remodel a home that is more durable and has a better resale value. Another could be most concerned with lowering their carbon footprint, while yet another might focus more on energy and water conservation and reducing related costs. Whatever brings you to the table, be proud that you’re taking a seat, and a stand.

With buildings accounting for nearly 40 percent of global and U.S. energy consumption, it’s imperative that the building sector play a key role in promoting and practicing effective climate policy. Efficiency measures in new and existing buildings provide enormous opportunities for nations to reduce their energy consumption while at the same time driving improvements in public health, productivity and job creation. According to the International Energy Agency, energy efficiency measures have the potential to deliver two-thirds of the energy-related CO2 emissions reductions needed to combat climate change.

The building industry has a tremendous impact on reducing harmful carbon emissions through the homes, buildings and communities we design and build.

  • Based on 2018 data from the United Nations Environment Programme (, the building sector accounted for 36% of global energy use; 39% of energy-related CO2 emissions including 11% from manufacturing building materials like steel, glass and cement; 51% of global electricity consumption…And in the U.S. that last figure was 70%!
  • According to the Alliance to Save Energy (, buildings in the U.S.—including offices, homes and stores—use 40% of our energy and 70% of our electricity. Buildings also emit more than one-third of U.S. greenhouse gas emissions—more than any other sector of the economy.
  • Building-related emissions more than doubled since 1970; and are expected to double or triple again by mid-century.
  • It’s a fallacy that the power plants, not the buildings, are creating the problem. Buildings create demand for the energy that power plants produce. Our buildings need cooling and heating, lighting, etc. most coming from electricity. Globally, one-fifth of total energy used in buildings is heating and cooling. (In my experience, it’s higher in the U.S.)
  • The building industry plays a key role in bringing this total energy usage down.
  • Good design in residential building and retrofits can reduce heating and cooling energy use by 1/3 by mid-century, assuming that building floor area will at least double during the same period, without sacrificing comfort.
  • Why retrofit or build to achieve only a 30 to 40% increase in efficiency when we can employ available standards like Passive House and other strategies to achieve a 90% increase in efficiency?
  • Passive House and other high-performance building standards need to become part of the building code, moving evidence-based high-performance from a niche to a mass market.

I continue on a personal quest to learn more and employ every tool available to reduce the energy demand and related carbon emissions in the built environment. My chosen profession gives me many opportunities to affect real and lasting change. No one person can do this alone. There are opportunities for each of us to reduce our energy consumption and the related carbon emissions that contribute to climate change. Get creative.

Over the next few months, I’ll be focusing blogs on things that are being done to improve our state of living and nurture the health of the planet. Stay tuned. And feel free to send your questions, comments and suggestions to

Monterey Bay Regional Climate Action Compact
Posted August 6, 2019 by Rob Nicely

It’s no secret that Carmel Building & Design is committed to building in a way that is beneficial to homeowners and the planet. We’ve long been advocates of design/build practices that reduce the energy demands of buildings, lowering related carbon emissions that lead to climate change. We’re putting our passion and commitment into action by joining with and supporting other organizations that are working diligently toward shared goals—increasing the supply of energy-efficient, affordable housing in our region (Monterey, San Benito and Santa Cruz counties) and lowering carbon emissions. Whether single or multi-family projects, we know from experience that buildings can require significantly less energy and rely increasingly on renewable energy, creating healthier indoor air quality and more durable structures.

This blog in our series highlights the Monterey Bay Regional Climate Action Compact (MBRCAC). This action-oriented network of government agencies, education institutions, private businesses, nonprofits and non-governmental organizations works collaboratively to address the causes and impacts of global climate change. The organization and its members focus on four primary objectives including 1) reducing regional greenhouse gas emissions; 2) supporting economic development and job creation and retention; 3) raising awareness of the impacts of climate change and provide related education; and 4) develop and support climate change adaptation strategies.

Since it formed in 2007, the Regional Climate Action Compact has been instrumental in establishing and supporting a number of community-based initiatives that spur economic vitality and reduce environmental impacts for the region, including:

  • Established the Monterey Bay Carbon Fund, generating $410,000 for two Solar for Schools projects
  • Instrumental in the realization of Monterey Bay Community Power serving Monterey, San Benito and Santa Cruz counties by purchasing or generating renewable energy resources on their behalf
  • Secured California Energy Commission grant funds for developing and implementing the statewide Energy Upgrade California whole-home retrofit program
  • Issued RFPs to Compact members that resulted in the installation of three electric vehicle charging stations in the region
  • Created Green Building Task Force and Green Building Ordinance templates
  • Expanded access to Zipcar (a car share program) in the greater Santa Cruz community
  • Holding semi-annual Regional Climate Change Summits that have brought community leaders, residents and businesses together to address climate change and the region’s response to the challenge

To learn more about the Monterey Bay Regional Climate Action Compact and how you can get involved, visit

Monterey Bay Economic Partnership’s Housing Program

Posted July 23, 2019 by Rob Nicely

We’re happy to say that there’s a tremendous amount of work going on behind the scenes in the Monterey Bay region. Efforts include addressing both the lack of housing—affordable housing in particular—and developing strategies to reduce related carbon emissions that lead to climate change. That’s why we’re presenting a series of blogs that shine light on some of the organizations that are making good things happen throughout our region. And to spread the word on ways you can join in and support these efforts and be part of the solution.

The second in our blog series showcases Monterey Bay Economic Partnership’s (MBEP) Housing Program. Program Manager Matt Huerta oversees a team of three who are engaged in a tri-county (Monterey, San Benito and Santa Cruz counties) initiative that focuses on activation, advocacy and support of projects and policies that align with their mission. The mission of the initiative is to create a greater supply of high-quality and affordable housing concentrated in areas near transportation hubs and job centers. This achieves a dual purpose of increasing the housing supply and lowering carbon emissions from long commutes in single-occupancy vehicles.

MBEP tracks bigger housing projects and policies in the three counties and lends support to turn plans into reality. Their endorsement process involves conducting a pro and con analysis, engaging with local stakeholders, including resident leaders, business leaders, local government staff and elected officials. Once the analysis and engagement are complete, they obtain the approval of their Board Executive Committee.

A recent example is the re-zone of the commercial and industrial area adjacent to the Monterey Regional Airport on Garden Road to allow for up to 405 residential units. They worked with the Monterey Peninsula Chamber of Commerce, faith-based leaders, United Way of Monterey County, Landwatch, Monterey Peninsula Renters United and City of Monterey staff to build more awareness of the opportunity and encourage stakeholders to show up at meetings. They also worked directly with the Monterey Regional Airport whose leadership openly and actively opposed the proposal. The developer was able to make several modifications to his proposal to increase safety and reduce impacts to and from the Airport. The proposal received a split 3 to 3 vote at the Planning Commission and was automatically appealed to the City Council in June. City Council officials voted 4 to 1 to approve the change and usher in new homes over the next few years.

This project is just one example of the advocacy that is helping bring viable, critically-needed housing to this area that employs thousands of people who want to live closer to where they work.

MBEP will consider endorsing proposed housing policies and projects that meet certain criteria. MBEP’s Housing Advocacy Initiative aims to preserve and increase the quality of life and economic vibrancy of the Monterey Bay Region by increasing opportunities for workers and residents to secure affordable homes closer to their workplace. To be considered for endorsement, projects need to be aligned with the mission statement and community engagement criteria.

  • Increase the housing supply
  • Increase homeownership
  • Support adequate funding
  • Improve the political environment

Once endorsed, MBEP support may include:

  • Activating advocacy tools such as campaigns, petitions and letters as well as social media in support of a policy
  • Working with grassroots groups, business leaders and other stakeholders to increase participation and support
  • Attending public hearings and other meetings as time allows

Organizations like MBEP and their Housing Program are going way beyond talking. They’re creating action and movement that is already effectively addressing the severe shortage of affordable housing in our region. For more information, visit

AMBAG—Working to make our communities and the planet healthier and stronger

Posted July 8, 2019 by Rob Nicely

Welcome to our first in a series that highlights area organizations dedicated to collaboration, addressing carbon emissions, climate change, housing, transportation and other issues that impact all of us.

Maybe you haven’t heard of the Association of Monterey Bay Area Governments (AMBAG). But since 1968, this dynamic organization has worked diligently to provide vital planning, modeling and forecasting services for the cities in and the counties of Monterey, San Benito and Santa Cruz.

Fusing local control and regional collaboration, the organization’s goal is to strengthen the region’s unique environment, economy and culture.

For at least 25 years, Carmel Building & Design has embraced and advocated for building practices that reduce a structure’s energy demands as well as the related carbon emissions that lead to climate change. We’ve worked closely with AMBAG and support their efforts to help lower the region’s overall carbon footprint from all sources. One of their programs that benefits businesses as well as the region’s cities and counties is called Energy Watch.

In partnership with California utility Pacific Gas & Electric (PG&E), the AMBAG Energy Watch Program is the regional leader in energy efficiency in Monterey, San Benito and Santa Cruz counties.

If you’re an owner of a lodging business, a nonprofit organization, school district, special district or city or county government located within the three counties, there’s likely something in this program for you.

AMBAG Energy Watch reduces energy use in our area by providing a variety of resources to PG&E customers, including:

  • Energy assessments and audits
  • Direct installation of energy efficient equipment
  • Assistance accessing 0% or 3% financing for energy efficiency projects
  • Energy efficiency seminars and training courses
  • Information on other PG&E energy efficiency programs and services
  • Compiling greenhouse gas inventories for jurisdictions
  • And a lot more

AMBAG is a Joint Powers Authority governed by a 24-member board of directors made up of locally elected officials appointed by their respective city council or board of supervisors. The board of directors sets policy and day-to-day operations are overseen by AMBAG’s executive director. The executive director is appointed by and serves at the pleasure of the board of directors. AMBAG serves as both a federally designated Metropolitan Planning Organization and Council of Governments to enable regional collaboration and problem solving. Among its many duties, AMBAG manages the regional transportation demand model and prepares regional housing, population and employment forecasts that are used in a variety of regional plans.

Membership and participation in AMBAG are voluntary on the part of its member jurisdictions. Funding is largely from state and federal transportation funds and grants as well as other project specific grants. Annual member dues are a small, but critical part of AMBAG’s funding.

For more information on AMBAG and the AMBAG Energy Watch Program, visit You can also find them on Facebook.

The real power behind switching to renewable energy

Posted May 17, 2019 by Rob Nicely

Recently we’ve seen and heard some commentary on the perceived futility of Monterey Bay Community Power’s adding renewable resources to the power grid through PG&E. The thought is that the power from all sources, no matter the source, go into the grid and ends up at your home or business. The latter is true. But, it’s important to consider this…

The more people opt for and financially support the concept of 100 percent renewable energy—like that from solar, wind and geothermal—the more of those resources will join the energy stream. Increasing the volume of renewable energy to the grid in turn will decrease the demand for fossil-fuel-based energy. Lower demand for carbon-heavy, depletable fossil fuels serves to decrease air, land and water pollution as well as the carbon emissions that non-renewable sources generate.

A look at the mandates and progress made in California helps put things in perspective and shines rays of green light on the topic.

The California Renewable Portfolio Standard (RPS) was established in 2002 by Senate Bill (SB) 1078 with the initial requirement that 20 percent of electricity retail sales must be served by renewable resources by 2017. The program was accelerated in 2006 under SB 107 requiring that the 20 percent mandate be met by 2010. In April 2011, SB 2 was signed into law, codifying a 33 percent RPS requirement to be achieved by 2020. In 2015, SB 350 was signed into law, which mandated a 50 percent RPS by December 31, 2030. SB 350 includes interim annual RPS targets with three-year compliance periods. In addition, SB 350 requires 65 percent of RPS procurement must be derived from long-term contracts of 10 or more years. In 2018, SB 100 was signed into law that again increases the RPS to 60 percent by 2030 and requires all of the State’s electricity to come from carbon-free resources by 2045. SB 100 took effect on January 1, 2019.

Every bit of renewable power helps reduce the overall percentage that’s garnered from fossil fuels—fuels heavy on carbon emissions that exacerbate climate change. So, while it’s not a perfect world, and it’s not likely to be…ever, it is a definite move in the right direction.

Besides saving the planet, renewable resources for electricity can improve life in other ways

Posted March 25, 2019 by Rob Nicely

While we may think “less pollution” and “reduced carbon emissions” when we think of switching from fossil fuels to renewable energy sources for electricity generation, there’s a lot more sizzle in the switch. The benefits span the spectrum from improved public health and economic and job growth to abundant energy supplies and more stable prices.

On their website, The Union of Concerned Scientists presents scientific evidence as well as relatable examples of the impacts of global warming. Also presented are solutions—including those at the individual, community, legislative and societal levels—that are implemented, planned and pending.

Here are highlights (with immaterial edits for brevity) from UCS findings on the benefits of moving from electricity generated from fossil fuels to infinite resources such as solar, wind and geothermal. In future blogs, we’ll share other enlightening scientific findings from the UCS. Visit their site for detailed stories, reports and publications, as well as information sources, on this and other aspects of global warming caused by carbon emissions.


In the U.S., about 29 percent of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels such as coal and natural gas.

Carbon dioxide is the most prevalent greenhouse gas, but other air pollutants such as methane also cause global warming. Different energy sources produce differing amounts of these pollutants. To make comparisons easier, they use a carbon dioxide equivalent—or CO2e—the amount of carbon dioxide required to produce an equivalent amount of warming.

Most renewable energy sources produce little to no global warming emissions. Even when including “life cycle” emissions of clean energy (emissions from each stage of a technology’s life—manufacturing, installation, operation, decommissioning), the global warming emissions associated with renewable energy are minimal.

Look at the numbers: natural gas for electricity releases between 0.6 and 2 pounds of carbon dioxide equivalent per kilowatt-hour (CO2E/kWh); coal emits between 1.4 and 3.6 pounds of CO2E/kWh. Wind, is responsible for only 0.02 to 0.04 pounds of CO2E/kWh on a life-cycle basis; solar 0.07 to 0.2; geothermal 0.1 to 0.2; and hydroelectric between 0.1 and 0.5.

Renewable energy could help reduce the electricity sector’s global warming emissions by approximately 81 percent.


The air and water pollution emitted by coal and natural gas plants is linked with breathing problems, neurological damage, heart attacks, cancer, premature death and a host of other serious problems. The pollution affects everyone: one Harvard University study estimated the life cycle costs and public health effects of coal to be $74.6 billion every year. That’s equivalent to 4.36 cents per kilowatt-hour of electricity produced—about one-third of the average electricity rate for a typical U.S. home.

Most of the negative health impacts come from air and water pollution that clean energy technologies simply don’t produce. Wind, solar and hydroelectric systems generate electricity with no associated air pollution emissions. Geothermal and biomass  systems emit some air pollutants, though total air emissions are generally much lower than those of coal- and natural gas-fired power plants.

Wind and solar energy require essentially no water to operate so they do not pollute water resources or strain supplies by competing with agriculture, drinking water or other important water needs. Fossil fuels can have a significant impact on water resources: both coal mining and natural gas drilling can pollute sources of drinking water, and all thermal power plants—including those powered by coal, gas and oil—consume water for cooling.


Strong winds, sunny skies, abundant plant matter, heat from the earth and fast-moving water can each provide a vast and constantly replenished supply of energy. A relatively small fraction of U.S. electricity currently comes from these sources, but that could change: studies have repeatedly shown that renewable energy can provide a significant share of future electricity needs, even after accounting for potential constraints.

A study by the Energy Department’s National Renewable Energy Laboratory (NREL) found that renewable energy could comfortably provide up to 80 percent of U.S. electricity by 2050.


Fossil fuel technologies are typically mechanized and capital intensive. The renewable energy industry is more labor intensive. Solar panels need humans to install them; wind farms need technicians for maintenance. That means that on average more jobs are created for each unit of electricity generated from renewable sources than from fossil fuels.

In 2016, the solar industry employed more than 260,000 people, including jobs in solar installation, manufacturing, and sales, a 25% increase over 2015. The hydroelectric power industry employed approximately 66,000 people in 2017; the geothermal industry employed 5,800 people. In contrast, the entire coal industry employed 160,000 people in 2016.

Increased support for renewable energy could create even more jobs. The 2009 Union of Concerned Scientists study of a 25-percent-by-2025 renewable energy standard found that such a policy would create more than three times as many jobs (more than 200,000) as producing an equivalent amount of electricity from fossil fuels. In addition to the jobs directly created in the renewable energy industry, growth in clean energy can create positive economic “ripple” effects. For example, industries in the renewable energy supply chain will benefit, and unrelated local businesses will benefit from increased household and business incomes.

Local governments also benefit from clean energy, most often in the form of property and income taxes and other payments from renewable energy project owners. Also, farmers and rural landowners can generate new sources of supplemental income by producing feedstocks for biomass power facilities.

UCS analysis found that a 25-by-2025 national renewable electricity standard would stimulate $263.4 billion in new capital investment for renewable energy technologies, $13.5 billion in new landowner income from biomass production and/or wind land lease payments, and $11.5 billion in new property tax revenue for local communities.


Renewable energy is providing affordable electricity across the country right now and can help stabilize energy prices in the future.

Although renewable facilities require upfront investments to build, they can then operate at very low cost (the “fuel” is free for most clean energy technologies). As a result, renewable energy prices can be very stable over time. In contrast, fossil fuel prices can vary dramatically and are prone to substantial price swings. For example, there was a rapid increase in U.S. coal prices due to rising global demand before 2008, then a rapid fall after 2008 when global demand declined. Likewise, natural gas prices have fluctuated greatly since 2000.

The average price to install solar dropped more than 70 percent between 2010 and 2017. The cost of generating electricity from wind dropped 66 percent between 2009 and 2016. Costs will likely decline even further as markets mature and companies increasingly take advantage of economies of scale.


Wind and solar are less prone to large-scale failure because they are distributed and modular. Distributed systems are spread out over a large geographical area, so a severe weather event in one location will not cut off power to an entire region. Modular systems are composed of numerous individual wind turbines or solar arrays. If some of the equipment in the system is damaged, the rest can typically continue to operate.

Water scarcity is another risk for non-renewable power plants. Coal, nuclear and many natural gas plants depend on having sufficient water for cooling. And that means that severe droughts and heat waves can put electricity generation at risk. Wind and solar photovoltaic systems do not require water to generate electricity and can operate reliably in conditions that may otherwise require closing a fossil fuel-powered plant.

The risk of disruptive events will also increase in the future as droughts, heat waves, more intense storms and increasingly severe wildfires become more frequent due to global warming—increasing the need for resilient, clean technologies.

Measuring energy efficiency using the HERS Index

Posted February 12, 2019 by Rob Nicely

With everything that’s measured, there has to be a benchmark, a starting point. And that’s true for measuring the energy efficiency of a home. Otherwise, how would we know if we’re meeting goals, getting where we want to be, making progress in decreasing overall energy consumption and the related carbon emissions that lead to climate change? And that’s where the HERS (Home Energy Rating System) comes in.

The HERS Index is a scoring system established by RESNET (Residential Energy Services Network), the national standards-making body for energy efficiency ratings and certifications of buildings in the U.S. It’s derived from the RESNET Reference Home, based on the 2006 International Energy Conservation Code.
Homes built to the specs of the RESNET Reference Home score a HERS Index of 100. The lower the HERS score, the more energy efficient it’s deemed to be. Each one-point decrease in the HERS Index equates to a one-percent reduction in energy consumption compared to the Reference Home.

Even though the standard is 100, most houses don’t perform that well. In fact, the U.S. Department of Energy has determined that a typical resale home scores 130 on the HERS Index. Remember, the higher the score the worse the energy performance. For example, a home with a HERS Index Score of 70 is 30% more energy efficient than a RESNET Reference Home.

A HERS rating of 100 may be code compliant, and yet still require many solar panels to meet the home’s energy needs. That same house with Passive House features could achieve this with one-fourth the solar panels. This makes a home more affordable to build as well as significantly lowers the cost of ownership. Other than the mortgage, heating, cooling and water heating account for the largest costs of homeownership. And a good place to start is knowing how your home or a home you’re planning to buy performs from an energy standpoint.

A HERS Report evaluates the energy features of a home and the expected cost of utility bills. It also answers important questions like, “how efficiently is the home operating?” And “where can modifications be made to increase energy savings?” When you’re selling your home, a low HERS Index Score can bring a higher resale price. And when you’re buying, you can anticipate the costs of energy bills and efficiency upgrades.

A certified RESNET Home Energy Rater can assess a home’s energy efficiency, resulting in a relative performance score or HERS Index Score. To arrive at a HERS Index Score, a certified rater does an energy rating on your home and compares the data to a reference home. The software uses a reference home of the same size and shape as the actual home, so your score is always relative to the size, shape and type of your house.

The HERS Rater considers many variables when rating a home, including:

  • Exterior walls (above and below grade)
  • Floors over unconditioned spaces like garages or basements
  • Ceilings and roofs
  • Attics, foundations and crawlspaces
  • Windows and doors, vents and ductwork
  • Air leakage in the home
  • HVAC system, water heating system and thermostat
  • Leakage in the heating and cooling distribution system

You can find an interactive HERS Index model to learn more about the scores at  And, you’re always welcome to send an email to

No time to ignore the warnings.

Posted November 14, 2018 by Rob Nicely

The recent news from scientists is yet another jolt of reality. A group of the world’s leading climate scientists on the Intergovernmental Panel on Climate Change warned in a recent U.N. report that “the planet has only 12 years to take drastic actions in order to limit global warming to 1.5 degrees Celsius or 2.7 degrees Fahrenheit. Anything beyond that could have dire consequences for much of the planet.”

In California, we’re witnessing the devastating impact of climate change, with fires burning north and south and not far from here in the Santa Cruz Mountains. Floods, mudslides and worsening storms have traumatized several other states, and countries around the world.

This news isn’t new. It’s something we’ve known for years now, but don’t seem to take as seriously as warranted. I can’t help but wonder why. Are we disbelieving? Apathetic? Thinking that one person’s actions don’t matter? Don’t know where to start? Believe that it’s just nature taking its course rather than something made worse by human activities?

According to NASA, 97 percent of climate scientists agree that global warming is “extremely likely due to human activities.” Here in the U.S., 60% of our electricity is generated by burning fossil fuels, mostly coal and natural gas, that produce carbon emissions. According to 2014 statistics, the U.S. (14.75%) is second only to China (25.9%) in the percent of total greenhouse gasses or carbon emissions generated by human activity. Let’s not get caught up on the cause. Whether or not it’s caused by human activity, it’s just as real and urgent.

Make no mistake, this is yet another wake-up call. I don’t want to sound all doomsday because there are still things we can do. Throughout history, most major transformations have started with grassroots movements. Regardless of what’s happening at the federal level, significant shifts in how we think and what we do about climate change need to start with each of us. We must continue to act as individuals, communities and municipalities to combat the apathy and bring about true change.

We need to let the report inspire us into action at a time when action will still make a difference.

Here are links to an interesting article on the latest report and an interview with Neil de Grasse Tyson:

Putting the “power” in the hands of the homeowner

Posted October 17, 2018 by Rob Nicely

As we mentioned in a July 11, 2018 blog, we’re employing technology to monitor the success of our energy reduction strategies. And, with this technology, homeowners can monitor, modify and remotely control many aspects of their home including appliances, thermostats and overall energy consumption. Energy waste is a notorious culprit in not only bumping up energy costs, but also contributing to carbon emissions that lead to climate change.

For us, it’s not enough just saying we build high-performing homes with significantly lower energy demands. We think knowing is far better. In August, we began testing this sophisticated monitoring technology in a Carmel home—Central California’s first certified Passive House.

After just one month of monitoring, the homeowners are already reaping the benefits. The measurements can be traced to specific usage points. In this home, we saw their living/dining room plugs were drawing the largest load of power. We suggested they use a power strip rather than plugging directly into the wall so they could easily turn everything off when they were going to be away from the home.

The monitors collect data 60 times each second, then it’s averaged and updated on the dashboard every minute—yielding real time data. While we were at the home, the owner unplugged the TV and stereo and within a couple of minutes we saw the draw of the living/dining room plugs drop by around 30 percent. A gratifying start to what we view as an important addition to the services we offer homeowners.

The more information we have to limit energy waste, the further along we will be—as individuals, as a company and as communities—in creating healthy indoor air quality and comfort and reducing our negative impact on the environment.

Want to know more? Send an email to or use the Ask CBD feature on our website.

A foggy source of water becomes clear

Posted October 10, 2018 by Rob Nicely

If there’s one thing that rings true much of the year, the Monterey Peninsula has no shortage of fog. It obscures the scenery, puts a damper on plans (and moods) and can be collected and used as a supplemental water source. Wait. What?

While it will never be a source of water that can meet the demands of Peninsula residents, CSUMB professor and local expert “fog catcher,” Dr. Daniel M. Fernandez, is testing its applicability as a supplemental resource. He’s been studying fog for years and has built many fog collectors. Recently, he got his students involved. “This was the most fog collectors I have built at any one time and in any one place,” he says.

Dan and his students constructed and installed 10 fog collectors on the CSUMB campus. Resembling a screen door on posts, collectors are made with specialized mesh screens that catch water particles as fog makes its way through. Water droplets fall into a trough, equipped with a built-in gauge for measurement. Over the course of a few days, about 11 liters of water were collected. Each of the 10 fog collectors were set up to funnel collected water to an oak tree sapling. “The project will tell us if the trees can get enough water from fog collectors alone,” says Dan.

Dan has had experience building fog collectors here and has traveled extensively through Chile—one of the first countries to initiate such efforts. He, along with many experts in the field, believe that fog collectors may be a potential source for reforestation on land that doesn’t have piped-in water. “In some areas where there’s little or no rain, there is fog,” he says. “The best fog collection is at elevations of 2,000 feet or above. One project in Chile was close to the ocean and nets were set up to pipe water down to a village, supplying their water for nine years. Another used fog to water a grove of olive trees and soon they’ll be producing olive oil using the fog-fed plants.”

Fernandez has applied for a grant to do state-of-the-art research to determine what fraction of water is collected by different types of mesh given different fog droplet sizes. Researchers are also looking at tree rings to determine whether the trees were watered by rain or fog during different periods of their growth, as each have chemically different isotopes.

“Fog collectors have many potential applications for addressing the effects of climate change,” he says. Areas in the west are experiencing more drought and becoming more susceptible to large scale fires. Trees are good collectors of fog, but if the trees are destroyed, can fog collectors act as a supplement? He also posits questions like, “Are we going to get less water in the future with climate change and will fog patterns be affected?” “The answer to both questions is ‘yes,’” says Dan, “but we don’t know the extent or timeframe. We need long-term fog collection to know. While there is a future in fog, it’s not going to take the place of other sources for the kind of water usage we have in the U.S. But there may be applications where there isn’t access to potable water.”

For a closer look, watch this KSBW segment or a TEDx talk given in 2011 by Dr. Fernandez.

As always, feel free to send your questions to or use the Ask CBD feature on our website.

A big step toward reducing greenhouse gasses – Opting for electricity over fossil fuels

Posted September 5, 2018 by Rob Nicely

The term “electrification of homes” is popping up more frequently in the design/build sector. It’s part of a movement to lower our use of fossil fuels that yield greenhouse gasses (GHG or carbon emissions) and contribute significantly to climate change.

As shown in the example of Monterey Bay Community Power—the locally owned power generation company serving Monterey, Santa Cruz and San Benito counties—electricity can be produced through renewable sources like the sun, wind and water. The more we turn to these renewables, the more we reduce our dependency on fossil fuels like natural gas, oil and coal. Not only is the supply of fossil fuels finite, extracting and burning them to generate power are major sources of environmental pollution.

A June article published on explores the example being set by the Sacramento Municipal Utility District (SMUD). In a nutshell, not only is more than 50 percent of their power-generation mix carbon-free, the agency is offering rebates to incentivize homeowners to adopt electrification as standard in both new construction and retrofits.

And research shows that there is a resultant annual savings in energy costs for consumers. The good news just keeps coming. This progress on SMUD’s way to reducing GHG to 90 percent below 1990 levels by 2050, is just a sample of what can and is being done in communities throughout California.

According to Owen Howlett, project manager of energy strategy research and development at SMUD, “Electrification provides a magnitude of GHG reduction that cannot be matched by energy efficiency measures.”

You’ve heard this from us before…as a design/build firm, we view each home we build and the environment as living space. We have the knowledge—and are continuing to gain more—to build homes that have healthy indoor air quality, are durable and comfortable, require significantly less energy, rely on renewable resources, and produce far fewer carbon emissions that worsen the real problem of climate change.

Ever-advancing technologies that are becoming more mainstream and cost-effective are aiding our efforts. Opting for heat-pumps for water and space heating, and induction stovetops and electric ovens for cooking, means we can lower our negative impact on the environment without sacrificing comfort and convenience.

We’ll explore the specific technologies in future blogs. In the meantime, click here to check out the full article about SMUD. If you have questions, send an email to or use the Ask CBD feature on our website.

Things we CAN do to effect positive change

Posted August 4, 2018 by Rob Nicely

At times, the challenges we face as citizens of a city, state, country and planet seem too big to scale. Unsolvable. Immovable. Overwhelming. But that couldn’t be further from reality. There are things each of us CAN do to effect positive change. Make our little part of the world better, safer, more viable. We can choose to be aware of our individual and collective impact on the environment. And not just for today. Decisions we make and actions we take now will have a lasting influence on future generations, whether positive or negative.

One thing we all CAN do is educate ourselves. Learn. Gather information from trusted resources, based on science. Open our minds to creative solutions. Support businesses that offer alternatives to products, materials and systems that protect human and environmental health. The more we invest in sustainable practices and products and conservation of finite natural resources, the better chance we have to shift demand in the right direction.

As a design/build firm, we view each home we build and the environment as living space. We have the knowledge—and are continuing to gain more—to build homes that have healthy indoor air quality, are durable and comfortable, require significantly less energy, rely on renewable resources, and produce far fewer carbon emissions that worsen the real problem of climate change. But, it’s not something we do alone. We depend on innovative individuals and organizations that create and sell building materials, technologies and systems that make the way we build feasible.

Of course, it goes beyond how we build homes to how we live in them. Opting for non-toxic cleaning and personal care products, finishes, furniture, fixtures and accessories that are sustainably made, reducing waste, reusing and recycling and looking for ways to conserve water. When we vote with our wallets, these businesses will have more resources to expand production—supply and demand at work eventually lowering costs and making these options the first choice rather than the exception.

Individuals, organizations and businesses committed to human and environmental health are gaining momentum. Learning more about them and supporting their efforts will keep us all moving in the right direction. Here are a few to check out. By the way, we have no financial interest in any of these entities. We just like, support and applaud what they’re doing. Have a business, organization or individual you’d like to recognize for their efforts to reduce negative impacts human and environmental health?Send an email to or use the Ask CBD feature on our website.

Mountain Feed & Farm Supply –
Greenspace –
SC41 –
475 High Performance Building Supply –
+Olive –
Eco Carmel –

Removing the guesswork in energy performance

Posted July 11, 2018 by Rob Nicely

For us, it’s not enough just saying we build high-performing homes with significantly lower energy demands. We think knowing is far better. That’s why we’re investing in sophisticated monitoring technology. We’re testing it in a Carmel home now and hope to roll out the option for clients in the near future. This precise level of monitoring provides data to help us know that the home performance strategies, like Passive House, we’ve employed are working. And, it puts the ability to manage and reduce energy consumption, along with the negative impacts on indoor air quality and the environment, in the hands of homeowners.

First, let’s take a look at how we got here and why monitoring is important. As we talked about in an earlier blog, we now use the Passive House Planning Package (PHPP) software to precisely predict how a home will perform from an energy standpoint. We input data including building specs and the home’s location. The software gathers climate data from sources like NOAA to show how much sun is at the house day in and day out. Then, we “build” it in the software to evaluate its energy performance and how much photovoltaic we would need to achieve Net Zero Energy. This enables us to make adjustments before construction begins.

Historically, we’ve used a blower door test to confirm effectiveness of our building strategies. With energy monitoring technology, we can know for sure if our modeling was successful and see the actual results over time. It facilitates continuing improvements in the way we build, creating homes that use significantly less energy and resulting carbon emissions.

The technology also empowers homeowners with the ability to monitor, modify and remotely control many aspects of their home including appliances, thermostats and overall energy consumption. Energy waste is a notorious culprit in not only bumping up energy costs, but also contributing to carbon emissions that lead to climate change. The more information we have to limit energy waste, the further along we will be—as individuals, as a company and as communities—in creating healthy indoor air quality and comfort and reducing our negative impact on the environment.

Sourcing sustainable, cost-effective, innovative materials and knowledge for high-performance home building

Posted June 25, 2018 by Rob Nicely

In our quest to build super energy-efficient, low carbon footprint homes with healthy indoor air quality—like those that incorporate Passive House standards—we’re always looking for reliable, versatile, forward-thinking suppliers. We’re fortunate that there’s a slow but steadily growing demand for more sustainable, non-toxic materials that we need to craft high-quality, high-performing homes. And companies in our local area and around the country are growing their offerings of materials, finishes, technologies and information that fuel our Progressive Building Practices.

Carmel Building & Design incorporates the basics of Passive House into every home we build. That means excellent insulation, effective air sealing, use of non-toxic materials, systems that control moisture and temperature and reliance on renewable energy resources. While rising energy prices continue to be an issue, many people want to reduce energy consumption—especially from non-renewable, carbon-heavy sources—for other reasons. Namely to reduce carbon emissions that lead to climate change. As a local leader in sustainable building, we’re proud to join other companies who are soundly at the forefront in their respective arenas.

One such company is 475 High Performance Building Supply. They’re based on the East Coast, but have a West Coast distribution center and local support, bringing their products and services closer to home. They have an online store with resources, including case studies and technical discussions, to assist architects and contractors in the design and construction of higher performing buildings. “Construction with yesterday’s materials and techniques might be a little less expensive upfront,” says Craig Toohey with 475, “but it leads to a future of high energy costs, a substandard level of comfort and less healthy indoor air quality.”

It’s good to have an innovative company like 475 on our side. Like us, they’re moving past ‘best practices’ of yesterday to those that will serve builders, homeowners and the planet for generations to come.

If you have questions or comments, email me at or use the Ask CBD feature on our website.

Developments that combine the best of the past, present and future

Posted June 6, 2018 by Rob Nicely

There’s nothing like learning from experience, including the experience of others. I’m excited to see design/build firms embracing the concept of neighborhoods of sustainably built, energy-efficient homes that rely on renewable energy resources. It’s a concept I believe in and one that I think could work in our area, just as it has in greater Salt Lake City, Utah. At a conference last year, I met a dynamic duo and was inspired by their passion, ingenuity and track record for creating developments of net zero energy homes powered by the sun.

So far, Redfish Builders, in partnership with Innovative Development Group, has built three Living Zenith communities. Each community of homes is unique, blending beautifully into its natural surroundings as well as being compatible with the design sensibilities of the area. Key commonalities in these three communities include onsite photovoltaic (solar) with storage, air filtration systems and HRV, smart technologies that enable remote control of the home’s settings and sustainable design/build practices and materials. Little but important details like a communal garden bring back thoughts of the days when we actually knew, communicated and shared with our neighbors. And they’re strategically located within walking or biking—forms of travel with zero carbon emissions—distance of services, shops, restaurants and entertainment.

All of that said, I think this concept is worthy of further exploration. And it’s always good to see the strides other design/build firms are making toward a more planet-friendly built environment. In my opinion, it’s our responsibility to build this way. There’s no end to what we can learn when we keep our eyes, minds and hearts open.

If you have questions or comments, email me at or use the Ask CBD feature on our website.

The Grid 101

Posted March 5, 2018 by Rob Nicely

We all know that when we flip a switch, turn a dial or point a remote, the lights come on, the stove ignites, the home begins to warm or cool. But where does the power come from and how does it get to homes, buildings and other places where it’s used? The source is commonly referred to as The Grid. The country’s primary Grid system was originally established in the 20s and 30s and is in serious need of updates to make it more efficient, less wasteful and a lot less harmful to the environment.

For a quick Grid 101, here’s some abbreviated info from There’s a lot more good information, graphs and videos on the website, including about efforts underway to bring it up to 21st Century standards and incorporate renewable energy resources.


9. Ever wonder how electricity gets to your home? It’s delivered through the grid—a complex network of power plants and transformers connected by more than 450,000 miles of high-voltage transmission lines. The basic process: Electric power is generated at power plants and then moved by transmission lines to substations. A local distribution system of smaller, lower-voltage transmission lines moves power from substations to you, the customer.

8. Thomas Edison launched the first commercial power grid, The Pearl Street Station, in lower Manhattan in 1882. The offices of The New York Times, was one of Edison’s earliest electricity customers.

7. America’s electric grid is comprised of three smaller grids, called interconnections, that move electricity around the country. The Eastern Interconnection operates in states east of the Rocky Mountains, The Western Interconnection covers Pacific Ocean to Rocky Mountain states and the smallest—the Texas Interconnected system—covers most of Texas.

6. The electric grid is an engineering marvel but its aging infrastructure requires extensive upgrades to effectively meet the nation’s energy demands. Through the Recovery Act, the Energy Department invested about $4.5 billion in grid modernization to enhance its reliability. Since 2010, these investments have been used to deploy a wide range of advanced devices, including more than 10,000 automated capacitors, over 7,000 automated feeder switches and approximately 15.5 million smart meters.

5. What is the distinction between grid reliability and resiliency? A more reliable grid is one with fewer and shorter power interruptions. A more resilient grid is one better prepared to recover from adverse events like severe weather.

4. Severe weather is the number one cause of power outages in the United States, costing the economy between $18 and $33 billion every year in lost output and wages, spoiled inventory, delayed production and damage to grid infrastructure. The number of outages caused by severe weather is expected to rise as climate change increases the frequency and intensity of extreme weather events. Preparing for the challenges posed by climate change requires investment in 21st century technology that will increase the resiliency and reliability of the grid.

3. One of the key solutions for a more resilient and reliable grid is synchro-phaser technology. These mailbox-size devices monitor the health of the grid at frequencies not previously possible, reporting data 30 times per second. This enhanced visibility into grid conditions helps grid operators identify and respond to deteriorating or abnormal conditions more quickly, reduce power outages and help with the integration of more renewable sources of energy into the grid. To date, nearly 900 of these devices have been deployed as a result of Recovery Act investments.

2. Micro grids—localized grids that are normally connected to the more traditional electric grid but can disconnect to operate autonomously—are another way that the reliability and resiliency of the grid can be improved. Micro grids use advanced smart grid technologies and the integration of distributed energy resources such as backup generators, solar panels and storage. Because they can operate independently of the grid during outages, micro grids are typically used to provide reliable power during extreme weather events. As part of the Obama Administration’s commitment to rebuild communities affected by Super storm Sandy, the Department partnered with the State of New Jersey and other organizations to examine the use of micro grids to help keep the power on during future extreme weather events.

1. Since 2010, the Energy Department has invested more than $100 million to advance a resilient grid infrastructure that can survive a cyber incident while sustaining critical functions. The Department’s cyber security work involves ongoing collaboration with a number of public and private partners including the Department of Defense, the Department of Homeland Security, the National Institute of Standards and Technology, the intelligence community, private industry and energy-sector stakeholders.

As of this writing, we’re no longer certain that the concentrated efforts initiated by the previous administration will be carried out. But we are certain that dramatic changes are needed. Our current grid system is antiquated and falling apart. Deferred maintenance has led to blackouts on the eastern seaboard and fallen electrical wires that caused devastating fires like the ones that ravaged Sonoma and Napa counties last year. On top of that, about two-thirds of all electric power is lost just getting it to the point of use. And it’s largely coming from finite resources that produce carbon emissions, contributing to climate change and air pollution.

CBD has a history of building homes that require significantly less energy and incorporate renewable energy sources such as photovoltaic panels. We’ve invested in training and technologies that help us achieve standards such as Passive House that can reduce a home’s energy demand by around 80 percent.

The obvious and growing consequences of climate change are breaking up the status quo of the macro grid and leading to considerations like micro grids that rely to a greater extent on renewable energy sources. Innovators are now moving into the marketplace and offereing ways to bring power closer to the points of use as well as developing storage systems for renewable power sources such as solar and wind. We are moving toward a more nimble, flexible grid that does more of what we need and want.

As always, send an email to if you have questions or use the Ask CBD feature on our website. Next up: Grid Alternatives


Carmel Building & Design applauds companies that embrace the values of sustainability and responsible use of our natural resources. We’re proud to feature an article written by Jill Heymsfield, Environmental Sustainability Coordinator for Aramark property Asilomar Conference Grounds, as a guest blog.

Guest blog by Jill Heymsfield, Environmental Sustainability Coordinator, Asilomar Conference Grounds
Posted February 21, 2018

Sustainability in the Hospitality Industry

Environmental pollution is not tied to one particular place on the map or business. Instead, it occurs everywhere and, in all industries, including hotels. Now more than ever we must take action to prevent environmental degradation and climate change. Here are some helpful starting points for making your hotel more sustainable.

Water Conservation
Water is a natural resource that is critical to the well-being of the environment. Not only does water promote ecological health, it is important from an economic standpoint as well. Many industries, including hospitality, depend upon this resource to be successful. Water is limited in supply however – especially in arid and drought-prone environments. That is why it is important to implement water conservation practices and always be on the lookout for water conserving technology. Some ideas include installing aerators for sink faucets, low flow shower heads, and water recycling systems. These small financial investments can end up saving money in the long term while also helping your property’s sustainability efforts.

Controlling Energy
Energy use from gas or electric is a major source of harmful air pollution and contributor to greenhouse gases. In addition to the long term environmental consequences, energy use is often times a large financial expense for a business. Thankfully, there are several ways to reduce energy use that are easy and with minimal cost. Start out by assessing your current light fixtures and other energy intensive appliances. Make sure to upgrade to LED lighting, and, when it comes time, replace older equipment with the newer and more energy efficient models. Also make sure to inform your employees about the small things, like turning off lights and computers at the end of the work day. Just remember that little bit of effort can go a long way!

Food Sourcing
Local food sourcing is an excellent way to provide hotel guests with a unique and sustainable dining experience. By creating a menu that offers local produce and seafood, for example, you can showcase regional delicacies that might not be offered in other places. And by purchasing locally, you can reduce the amount of harmful carbon emissions that result from transportation of food supplies. It is a fantastic way to support local agriculture and other food related businesses in the area. To save on costs, request seasonal options and purchase in larger quantities.

ISO 14001
ISO 14001 is a rigorous standard and certification program that is used to assess the sustainability of a business. During the implementation process, environmental impacts are identified and control measures are put into place. ISO is based on the cycle of continuous improvement, which means that certified hotels are held to a very high level of sustainability.

In today’s world, a business will need to incorporate environmental sustainability into their overall mission in order to be truly successful. As you can see from the above examples, this is not as farfetched as it seems. Start out small, and eventually you will create a culture of sustainability that is as remarkable as your location!

For more information on sustainable practices at Asilomar Conference Grounds, please contact Jill Heymsfield, Environmental Sustainability

Originally posted on LinkedIn by Jill Heymsfield December 1, 2017

A look at Passive House Plus

Posted February 12, 2018 by Rob Nicely

One thing we know for sure is that the building sector accounts for about 32% of global energy use, 25% of global energy related CO2 emissions, and 51% of global electricity consumption—that last figure is 70% in the U.S. (based on 2010 data). Another thing we’ve come to know, and prove, is that standards like Passive House can bring down the energy demand of a home by around 80%. While photovoltaic panels help supplement remaining power needs during sunny periods, the issue of storage keeps homes on the power grid for at least some of the year.

Another key factor in reducing carbon emissions that lead to climate change is the switch from fossil fuels to renewable energy resources. Efforts are underway to increase the percentage of renewable energy sources in the mix. A State mandate requires PG&E to derive one-third of its electricity from renewable energy resources by 2020. That mandate increases to 50% by 2030. When people use a greener mix, say with Monterey Bay Community Power, and reinvest local profits into additional renewable energy sources, we can increase the availability of renewable energy sources over time.

Inspired in part by impressive advances in the efficiencies of renewable energy generation, paired with the urgency of meeting global climate change goals, Passive House Institute initiated a review of non-renewable energy use in buildings in 2013. Previous calculations for Primary Energy needed updating, especially as they favored the use of natural gas over electricity. Primary Energy accounts for all the source energy used by a building, including the amount of energy it takes to generate and deliver power to the site where it’s used. While less power is lost in getting natural gas to the point of use, it’s a combustion fuel source and will always create greenhouse gasses. It was the realization that about two-thirds of all electricity is consumed just in getting to the point of use that led to two new levels of certification: Passive House Plus and Passive House Premium. Passive House Plus and Premium calculations take into account the addition of renewable energy resources to the mix. The new certification levels provide the incentive of achieving a higher standard in building performance. And that’s good for the homeowners and the planet.

So far, we’ve built two homes to Passive House standards, one in Carmel which was Central California’s first PHIUS+ Certified Passive House, also LEED Platinum certified; and one in Pacific Grove crafted to achieve Certified Passive House status by the Passive House Academy as well as LEED Gold certification. In December 2017, we embarked on our most ambitious project…so far. With a certified Passive House Designer on the project team, we are crafting a Monterey home to achieve Passive House Plus, LEED Platinum and Net Zero Energy certifications. A second project, this one in Carmel Valley, will launch this summer and be designed to achieve the same certifications. We’ll report on the progress of these projects as we begin construction in June this year. As always, feel free to send me an email: or use the new Ask CBD feature on our website.

Seeing into the future of home performance

Posted January 29, 2018 by Rob Nicely

Building has traditionally relied on “rule of thumb”—we’ve learned to do things a certain way and get a predictable outcome based on past results. In our firm, we continue to try different techniques to achieve a target for the home’s performance in terms of energy efficiency. Having completed extensive training mentioned in our last blog, and using the Passive House Planning Package (PHPP), we can now be exact in how we build the home for energy performance.

PHPP is sophisticated energy modeling software that enables us to precisely determine the desired performance of the home. We input data including specs like the exact assembly of walls, ceiling and floors, the direction the home is facing and the R value of the insulation we plan to use. We also enter the location and the software gathers climate data from NOAA or other local source to show how much sun is at the house day in and day out. Then, we “build” the house in the software to see how it’s going to perform from an energy standpoint and how much photovoltaic we would need to achieve Net Zero Energy. This precision enables us to make adjustments before construction begins.

Once construction is complete, we do a blower door test to confirm results. PHPP enables greater accuracy and precision than we could possibly achieve without the computing power.

Training – laying the foundation for building a greener future

Posted November 9, 2017 by Rob Nicely

Building sustainably, green, responsibly or whatever you choose to call it, is a specialized craft. One that we’ve chosen as our standard way to build. One that needs to be done right if it’s to achieve its overall aim of increasing energy efficiency and lowering carbon emissions that are harmful to people and the planet. I am no longer content with energy efficient, high-quality, healthy and durable homes being the exception. I want the building industry to embrace these principles as the standard way to build. We’ve done homes like this before and there’s an ever-increasing number of buildings—including residential, commercial, institutional, even industrial—being built around the U.S. and around the world using Passive House, LEED and Net Zero Energy protocols. And more and more homeowners are looking for building professionals who are qualified to provide true green building services.

The kind of design and construction we do requires ongoing training and education. At all levels of our company. Every person involved in building or remodeling a home has to be on the same page and do their part to achieve a finished product that meets our high standards for energy efficiency, healthy indoor air, quality and comfort. As sustainable practices and protocols like Passive House make their way into the building industry mainstream and we continue to develop and implement standards that exceed industry norms, we’re all in for keeping our staff, and our company, at the forefront of this vital movement.

To date, we have sent 15 members of our staff through Build It Green’s Certified Green Building Professional (CGBP) course. And our intention is to train 100% of our team in these overarching principles of green building and the systems approach to the design, construction and operation of residential buildings. The course provides an understanding of energy efficiency, resource conservation and indoor air quality, and how we can effectively convey the importance of these building principles to homeowners. This green building 101 program gives our staff a solid foundation on which to build expertise in the Progressive Building Practices that are standard at CBD.

Hal Petersen, project and site manager for CBD, recently completed the Certified Green Building Professional course. “After taking this training course, I realized that there were a number of things I hadn’t totally understood before,” says Hal. “There are many things that we already do here and we’re implementing more and more of these practices into our standard protocols. It was a pretty intense 16-hour course and exam covering everything from insulation, air sealing, framing and energy systems to sustainable lumber, windows, gray water and VOCs, even practices like using nails instead of toxic glues to install hardwood flooring. I now have more knowledge and a broader perspective of how to employ these principles in each project.”

In the next in our series on the importance of education and training, we’ll talk about the North American Passive House Network’s Certified Passive House Designer/Consultant course that two of our staff and I completed in October. We are in the process of testing and certification. In addition, we have a Certified Passive House Designer on our team. That means we have more expertise to make this area’s built environment more harmonious with the natural environment.

Stay tuned. And as always, feel free to send an email to if you want more information.


Your daily dose of building science

Posted October 17, 2017 by Matt Hanner, Pre-Production Manager

We recently started work on a remodel.  When we attempted to perform a blower door test, the house had so many air leaks we couldn’t achieve a measurable number.  Once the internal wall finishes were removed, I saw this and thought I’d pass along a lesson learned.

One of the interesting things about spiders is that they prefer to build webs where there is air flow.  It makes sense when you think about it.  The air blowing through the web acts as a highway to bring a greater amount of food into the web.  In the photo you can see a great example of this.  In the stud bay at the center of the photo you can actually see daylight coming in through the wall.  As a result, this was the favored bay for the spiders to build their webs.  You’ll notice the bay to the left has a minimum air barrier of just tar paper, and far fewer webs. When you walk through the house, you can spot the air leaks quickly by looking for the spider webs.  Fewer spiders and webs — yet another side benefit of air sealing.

Many good reasons to attend the North American Passive House Network 2017 conference
Posted May 27, 2017 by Rob Nicely

You may be asking, “Why should I attend the North American Passive House Network conference and what’s in it for me?” I can answer honestly…a great deal. There’s a heightened awareness of the building industry’s ability to turn the tide of carbon emissions that are influencing climate change; and move to greater dependence on renewable energy resources. In 2010, the building sector accounted for 32% of global energy use; 25% of energy related CO2 emissions; 51% of global electricity consumption…And in the U.S. that last figure was 70%! Building-related emissions more than doubled since 1970 and are expected to double, or even triple again by mid-century.

Given these figures as a backdrop, we need to take responsibility for our role in reducing carbon emissions.

Passive House has been proven to reduce the energy demand of buildings by around 80%. We’re talking new construction, remodels and retrofits of every type of building whether residential, commercial or industrial. By significantly reducing the energy demand of buildings, Passive House can also help ease the transition to a grid supply based on renewable energy.

Cities and states around the country are not only incorporating Passive House standards into policies as a way to meet aggressive energy reduction (and as a result, carbon footprint) mandates, they are leading by example. At last year’s NAPHN conference in New York City, a number of cities, including Vancouver and New York, revealed that they are requiring city-owned capital projects to be designed to use at least 50% less energy than current standards dictate. And it wasn’t just the “plans” that were outlined at the conference, the “results” of completed projects and initiatives provided solid proof that these strategies work.

Innovations in technologies, materials and services are increasingly prolific, making Passive House more feasible, affordable and relevant than ever before.

Unless you live a building-free lifestyle, you need to be part of this conversation—especially if you’re in some aspect of the building industry. The conference is a venue for meeting, sharing and learning about actual, real and practical ways strategies like Passive House are changing the built environment. It provides a chance to talk openly, honestly and scientifically about the issue of climate change and the role of strategies like Passive House and renewables. Most of us at some point have learned to soft-pedal the issue, not boldly speaking up for fear of being perceived as hysterical or fanatic. It’s more critical now than ever to bestraightforward and honest about the science that proves the planet is in trouble.

The point is that there’s a growing movement to protect and preserve the planet.As part of the building industry, we have both a role and a responsibility to learn, lead and leverage all the knowledge, evidence and proven strategies at our disposal. Passive House is one that we know works.

Click here for more information on the conference.

California’s All-Renewable Energy Future – Introducing Passive House Plus and Premium
Posted January 17, 2017, guest blog by Bronwyn Barry, CPHD


Figure 1. Renewable energy sources are incentivized with PER factors (Logo use with permission, PHI. Original Illustration by author.)

If you’ve been puzzled by the proliferation of ‘net,’ ‘nearly’ and ‘almost ready’ Zero Energy definitions and standards and have wondered just how net or nearly they truly are, take heart. The Passive House Institute (PHI) has introduced an equitable assessment of energy use to help guide us toward the 100% renewable energy future our State—and planet—must rapidly achieve.

Inspired in part by the impressive leaps in the efficiencies of renewable energy generation, coupled with the urgency of meeting global climate change goals, PHI initiated a review of non-renewable energy use in buildings in 2013. They recognized that their previous calculations for Primary Energy needed updating, especially as they favored the use of natural gas over electricity. (Primary Energy accounts for all the source energy used by a building, including the amount of energy it takes to generate and transmit power to the building site.)  PHI recognized that non-renewable forms of energy use by buildings needed to be rapidly phased out, so they devised a method to incentivize the use of renewable forms of energy in buildings. Their research resulted in the overhaul of the existing Passive House ‘Classic’ standard and the introduction of two new standards: ‘Passive House Plus’ and ‘Passive House Premium.’


Figure 2. Passive House counts generation losses, transmission losses and seasonal generation. (Original Illustration by author.)

Primary Energy Renewable ‘factors’ and how they work

All of the new Passive House standards now calculate Primary Energy using Primary Energy Renewable (PER) factors. These are designed to encourage the use of renewable energy sources and create either incentives, or disincentives, for installing various types of mechanical equipment in Passive House buildings. For example, in San Francisco, using a heat pump water heater to produce hot water will result in lower Primary Energy requirement numbers than using a gas tank water heater, making it easier to meet the certification target. (A heat pump water heater has a PER factor of 1.25 versus the 1.75 factor for a gas-fired water heater.)

PER factor calculations are based not only on fuel source, but also on site-specific load profiles calculated on an hourly basis. In this way, variations in regional utility grid source energy and typical time-of-day use profiles which impact the availability of renewable energy to meet a utility’s load for the local climate and region are factored into these calculations. As a result, the PER factors can vary from city to city in California. For example, the electricity PER factor for heating demand via heat pumps is 1.80 in Sacramento. This relatively high PER factor incentivizes reducing heating demand in winter, when renewable energy supplies are low. In San Diego the comparable PER factor is set at 1.30, where the climate is milder and cooling is typically a greater peak load issue. (See Figure 5 in Appendix)

Crediting renewable energy equitably

Conventionally, calculations of net zero depend on the difference between a building’s annual energy demand and annual on-site renewable energy production. These calculations penalize tall buildings with small roof areas, buildings with no solar access, and buildings that opt to use their roof area for green space or as active living spaces. PHI took a major deviation from such traditional methods for crediting renewable energy supply to buildings, recognizing that all sites are not created equal in this regard. PHI’s approach uses the following principles:

  • Renewable offsets are calculated as a function of Projected Building Footprint (PBF) rather than total floor area. PBF is more proportional to available roof area than total floor area, which means multi-story buildings may achieve the Plus and Premium standards.
  • Buildings with no solar access on site may purchase off-site renewable energy facilities to achieve Plus or Premium certification.

PH ‘Classic’ buildings with no on-site or off-site renewable energy supply are still optimized for efficiency first and a future grid supply of all renewable energy.


Figure 3. Tall and shaded buildings are not penalized by the PER calculation. (Original illustration by author.)

Biofuels, microgrids and battery storage

While biofuels are considered a renewable energy source, they carry a penalty for replacing food production. Their burning also generates particulate matter that is both unhealthy and emits carbon. For these reasons, the use of biofuels is allowed, but has been capped to limit its use.

The most intriguing areas of innovation with regards to manifesting the 100% renewable energy future currently look to be in developing our capacity to store renewable energy. We’re excited by the contributions being made right here in California to develop technologies that are contributing to our new energy future. Existing storage capacity from hydroelectric schemes is now being joined by a growing array of affordable short- and long-term battery storage options. Converting renewable energy into methane gas is another rapidly developing technology that could increase the viability of renewable energy by allowing us to store it for longer.

Remarkably, these options are all currently supported by the Primary Energy Renewable calculations embedded in the Passive House Classic, Plus and Premium standards. Indeed, the ‘Classic’ standard at the heart of all of them remains the foundation that most equitably supports an all-renewable energy future. The Classic standard ensures that these buildings are optimized to become batteries themselves: they’ve been proven to retain an unprecedented level of thermal comfort while eliminating peak loads. This optimization ensures that even without the addition of ‘active’ power, their passive capacity is what is literally doing the heavy lifting. These buildings enable occupants to survive in adequate comfort for very lengthy periods of time without any active energy inputs. This quality offers economic benefits to both the utilities and microgrid designs of renewable energy storage systems that extend well beyond comfort. Just imagine what we could do with renewable energy if we didn’t need so much of it to simply operate buildings. The possibilities are boundless.

This article was first published in August 2016 by Low Carbon Productions in the print copy of ‘Passive House Buildings: California’s Energy Future,’ produced in collaboration with Passive House California. Additional articles and California project examples may be viewed in the free e-book here.


The PER sustainability assessment

Passive House – the next decade



Figure 4. PER demand and generation results table showing Certification Classifications (Taken from the PHPPv.9 – Copyright Passive House Institute)


Figure 5. PER factors for California’s largest cities sourced from PHPP v.9


Figure 6. Electricity use allocation showing direct consumption, storage and conversion potentials. (Copyright – Passive House Institute)


Side benefits of a Passive House – Extreme energy efficiency plus a whole lot more
Posted November 14, 2016 by Rob Nicely

There’s no doubt that building to Passive House standards results in energy consumption that’s about 70 to 80 percent less than what you’d expect from a traditionally built home (or school, or office building, or factory…you get the picture). That’s due in part to the fact that the home is air tight, super-insulated and uses a heat recovery ventilation system that exhausts air (and moisture) and replaces it with fresh filtered air. It’s warmed primarily by passive solar and internal heat gains from occupants, cooking, bathing and electrical equipment and kept cool in summer through shading, window orientation and ventilation.

And yes, you can open the windows and doors.  Thanks to the filtering system, it doesn’t matter if the doors and windows are open or closed. And no, you don’t have to live in a windowless box. Whatever style you wish, it’s possible with Passive House.

We recently interviewed the owners of Central California’s first certified Passive House that we finished in November 2012. The dramatic energy and water savings were givens. It was the bonus benefits that broadened the smile on our collective faces.

For starters, all year round every room is kept at a consistent temperature—no dips or spikes to get in the way of comfort. Evidence that the filtered air is pristine shows up in interesting ways. They’ve lived in the home four years and haven’t had to dust once…not a single time. There are no bugs on windows sills or in corners, no spider webs, no ants, none. Both occupants use allergy meds when they’re away from the home, but when they’re in their certified Passive House they retire the sprays and tablets after just a few hours. While the outside of the windows are washed periodically, the inside of the panes were washed only once. And according to the window washer, that wasn’t necessary.

And it’s quiet. There’s no whoosh of air from an HVAC system, noisy pipes or other sounds that seem to be present in the average house. Quiet is a secondary benefit of the excellent insulation in walls, ceiling and floors.

So when you add it all up, Passive is Aggressive as we like to say. After building this way, I know it’s simply the right way to build, whether or not we are pursuing Passive House certification. It’s better for the planet, better for the people who live in the home, and it makes me feel better knowing we’re building excellent quality homes.

Watch the video.

See photos of this Passive House

A whole lot of change is coming on.
Posted October 7, 2016 by Rob Nicely

While I’ll spare you the copious details, it’s important to understand state mandated energy reduction standards and how they impact upcoming changes in the building code. There are changes looming that significantly impact new residential construction as well as extensive remodels. Rules addressing commercial structures are not far behind, followed by requirements for existing structures.

Starting back in 1974, the State of California began implementing energy reduction standards. And the results have been dramatic. From the mid-1970s to 2005, ratepayers saved more than $65 billion, Californians paid 20% less on residential electricity bills than the average U.S. household, and we avoided the need to build nearly 30 large (500 MW) power plants. Additional standards came about as a result of The Global Warming Solutions Act of 2006, Assembly Bill (AB) 32, a California law that takes on global warming with a comprehensive program to reduce greenhouse gas emissions from all sources throughout the state.

Here’s the scoop:

  • New residential construction (which includes extensive remodels) has to be zero net energy by 2020. Zero net energy essentially means that the total amount of energy a building uses in a year is offset by renewable energy created on site. The most common source of onsite renewable energy is solar power.
  • New commercial construction has to be zero net energy by 2030.
  • By 2030, 50% of existing buildings must be equivalent to zero net energy buildings by achieving deep energy reductions with remaining power needs met by renewable resources, onsite or otherwise.

This is a good time for anyone thinking of building a new home or doing an extensive remodel to not only adhere to existing codes, but anticipate and incorporate strategies designed to meet the end goal of reducing carbon emissions. To meet the mandates we have to reduce the energy demands of buildings as much as possible, as fast as possible. Since the nearest mandate of 2020 affects new residential construction, let’s look at the building code changes that are now being enforced with greater consistency.

About every three years, building codes are updated. The 2013 building code cycle requirements to help us meet the 2020 deadline for carbon reduction are now being more aggressively enforced. Here are some highlights:

  1. QII (quality insulation installation) is now being enforced. Only when insulation is installed properly can it be effective in reducing air leaks and consequent energy waste. Because it’s often installed poorly, the R values of insulation have been increased: ceilings go from R19 to R30; walls remain at R13 with 2 x 4 openings and go up to R19 for 2 x 6 openings; floors go from R13 to R19. The R value is its thermal resistance and the higher the R value the more effective the insulation. The code also requires that the headers above windows and doors be insulated. We think the best answer is to make sure the insulation is installed properly and that the home is air tight.
  2. Code now basically says that you can’t use an open fireplace. The alternatives include a fireplace insert with a glass cover and pipe within a pipe system. One layer of the pipe draws air in while the other exhausts.
  3. Ducting for HVAC systems must be inspected and sealed to eliminate leaks. A lot of energy is wasted when conditioned air leaks from duct work. Ensuring that there are no leaks is one course of action. Using a ductless system, such as mini-split heat pumps, is an alternative we often use. Radiant heat in flooring is another.
  4. Because most new homes are air sealed, it’s mandatory in all new construction to have some kind of ventilation. We use HRV – heat recovery ventilation. While it’s acceptable code-wise to use high-grade bathroom fans to keep air moving throughout the house, they don’t do as good of a job of filtering out moisture. They also don’t draw in fresh filtered air, a major benefit of an HRV.
  5. A great deal of energy used to condition the space is lost through single pane windows. New energy efficient windows are required in all new construction.
  6. All new construction must be “solar ready.” That doesn’t mean that solar power has to be installed—but that will likely be required in another code cycle or two. For now it means that there has to be a place on a roof facing the sun without over-hanging trees and a pathway for the wires, essentially making the home ready for effective solar power to be installed.
  7. The issue of air conditioning is rising to the top. People building in warmer areas like the Carmel Valley and the Preserve for example, want air conditioning. You have to be able to move air easily through a duct system for air condition per the new code. If a ducted system is going to be used, it has to be designed into the home before it’s built. Mini-split heat pumps, that don’t require ducting, can be used for heating and cooling.

The code is just one of the levers we have to use to nudge people in the right direction. Another is the rising cost of energy. An air tight, well-insulated, energy efficient home is certainly a start, but how occupants consume energy in their home also matters. Check out the energy and money saving tips at and stay tuned for more information from CB&D.

Passive is aggressive—Passive House strategies increase energy efficiency and reduce carbon emissions
Posted August 3, 2016 by Rob Nicely

For more than two decades, I’ve been on quest to practice my profession in a way that aligns with my values and sense of responsibility to clients and the health of the environment. While the topic of carbon emissions—aka greenhouse gasses (GHG) or carbon footprint—has been circulating for a long time, it wasn’t until more recently that it became the focus of energy policymakers at the local, state, national and global level.

Passive House—a movement that started in ‘91 with a pilot project in Darmstadt, Germany, first hitting our shores in the early 2000s—has risen to the top as an effective and proven tool to drive down carbon emissions. This system of standards applies to buildings of all types and in every imaginable climate. With little or no added expense, PH strategies yield substantial reductions (we’re talking about 80% in the two PH-certified homes I’ve built so far) in energy usage while providing outstanding comfort, safety and health for occupants.

In June, I attended the North American Passive House Network conference in New York City where people from around the globe gathered to learn, share and pump up the urgency for change at their local and state levels. Cities, counties and states are mandated to reduce overall carbon emissions by dates as early as 2020. This is our new reality. Passive House offers a clear and reliable road map to meeting and exceeding the mandates. Its proven strategies are being woven into climate action plans around the country, making significant progress in limiting GHG from the built environment.

Here are 10 key things I took away from the conference, reinforcing my confidence in the power of Passive House:

  1. Passive House can reduce the energy demand of buildings by around 80%. We’re talking new construction, remodels and retrofits of every type of building whether residential, commercial, industrial or institutional.
  2. A quick look at these facts emphasizes the building industry’s vital role in addressing climate change: In 2010, the building sector accounted for 32% of global energy use; 25% of energy related CO2 emissions; 51% of global electricity consumption…And in the U.S. that last figure was 70%! Building-related emissions more than doubled since 1970 and are expected to double/triple again by mid-century.
  3. On top of dramatically reducing energy demand, PH principles such as air sealing, thorough insulation and innovative mechanical systems, yield much improved indoor air quality, quiet and durability and significantly lower carbon emissions.
  4. Cities and states around the country are not only incorporating PH standards into policies as a way to meet aggressive energy reduction (and as a result, carbon footprint) mandates, they are leading by example. A number of cities represented at the conference, including Vancouver and New York, are requiring that city-owned capital projects be designed to use at least 50% less energy than current standards dictate. And it wasn’t just the “plans” that were outlined at the conference, the “results” of completed projects and initiatives provided solid proof that these strategies work.
  5. Innovations in technologies, materials and services are increasingly prolific, making PH more feasible, affordable and relevant than ever before.
  6. Passive House can work anywhere, in any type of climate. In fact, it lets occupants ride out extreme weather events and power outages in relative comfort.
  7. PH yields long thermal constants, requiring very little heating and cooling. Any needed space conditioning can be scheduled for non-peak times when the supply of renewable energy like solar is readily available.
  8. In 2011, per the U.S. Dept. of Energy, 88% of the electricity consumed in this country was provided by nonrenewable sources. And this doesn’t include fuels like oil and natural gas consumed in large quantities at the individual building level.
  9. By significantly reducing the energy demand of buildings, PH can also help ease the transition to a grid supply based on renewable energy.
  10. While it’s not a PH strategy, addressing the amount of energy related to water usage is a sound building science strategy. Almost 20% of California’s energy use is related to water—the carbon footprint includes the energy to collect, treat and deliver it to buildings, heat it and treat it after use. Building science strategies can be used to reduce the amount of energy required to heat water as well as the amount of water wasted while it’s heating up. Think structured plumbing, gray water heat recovery and recycling technologies like the Nexus eWater system, and reusing gray water and rainwater for exterior landscape irrigation.

When 175 countries signed the Paris Climate Accord in April this year, it was a welcome harbinger of the need to halt climate change by deeply cutting carbon emissions. As UN Secretary-General Ban Ki-moon put it, “We are in a race against time. The era of consumption without consequences is over.” It’s exciting to see concepts like Passive House and Net Zero Energy (energy demand is reduced so significantly with PH that the minimal power needs can be met with PV panels) taking hold.  Through our cities’ and counties’ climate action plans, we have the opportunity to turn the tide of climate change and restore the health of our planet.

If you’d like to know about Passive House, send me an email at

The state of water in the State of CA
Posted June 28, 2016 by Rob Nicely

So California finally got ample rain and snow during the 15/16 season. We also got used to using a lot less water, especially for washing cars and watering lawns. It’s actually nice to see the creativity at play as we move away from the traditional green lawns to use of drought tolerant plants or zero-water materials. We’ve gotten used to shorter showers, not letting the water zip down the drain as we brush our teeth, saving up for fuller loads in the dish- and clothes-washers, along with other conservation measures. It wasn’t so bad now was it? Why not consider this our new reality rather than celebrating a decent wet season by lapsing into old water wasting habits? We did it so why not continue and get even more creative? After all, we are certainly not out of the drought woods…who knows how much of that water will disappear with the summer heat, or if we’ll see rain again this winter? The Monterey Peninsula Water Management District is in a little different position since our resources of fresh water are especially limited. Here, continued conservation and restrictions are in place. So, put the rainy season to good use—read, study up, surf the Net, take a class through the local water resources agency—and learn more about the many ways to use water more wisely. And remember, when you conserve water, the lower water bills will put a little more green in your piggy bank.  Here are a few tips to keep in mind:

Manage your liquid assets inside and out


  • Little drops can lead to big leaks in your wallet. Check faucets, showerheads and pipes for drips—typical repairs are simple and low cost.
  • Keep a pitcher of water in the fridge to avoid wasting water to make it cold.
  • Explore the feasibility of an on-demand or recirculation system for your home. A lot of water goes down the drain while it’s heating up.
  • It’s been said before, but it still makes sense. Turn off the water while doing things like brushing your teeth. Stop the flow until you need it.

And Out

  • Attach an adjustable spray head to your garden hose, and make sure it doesn’t drip or leak around the edges.
  • Turn off the water just before you’re finished and use what’s left in the hose so it’s not lost a drop at a time.
  • Opt for drought tolerant plantings for a beautiful, budget-loving landscape.
  • Consider a ‘smart’ irrigation system. It detects moisture in the soil and turns on the water only when your veggies and flowers are thirsty.
  • Explore a water catchment system for use in hydrating plants and gardens, or washing the car. Whether you opt for a simple barrel to collect rainwater or a sophisticated system that captures the flow from the shower and washing machine, you’ll have ‘recycled’ this liquid asset.

Thirsting for information? Send me an email.

Why build sustainably? There’s just no good reason not to!
Posted April 29, 2016 by Rob Nicely

Building in a way that not only creates a better quality, much more energy efficient and comfortable home, but also reduces our overall negative impact on the environment, just makes sense to us. And because we have the know-how, resources, materials, technologies…and growing body of experience, there’s just no good reason not to. Whether or not we’re following a specific set of guidelines such as Passive House, we always build in a way that reduces waste in materials, resources, energy and water. We use reclaimed or recycled materials when possible, utilize strategies like advanced framing and window placement for passive light and temperature control, choose finishes with very low or no VOCs, and insulate thoroughly. It’s a matter of thinking through the project, understanding the owners’ vision, and moving forward in a way that improves the home’s performance. While we have many projects that meet the standards of Passive House, Zero Net Energy, Living Building Challenge, LEED, and other green building programs, we don’t see a reason not to build responsibly whether or not we’re pursuing a certification. It’s just the right thing to do. And a better way to build—for the homeowner, and the planet. If you’d like more info on our standard building practices or those that go even further down the path of quality and sustainability, send me an email.

To certify or not to certify?…a good question.
Posted April 6, 2016 by Rob Nicely

Our rationale of following the path of Passive House, LEED, Zero Net Energy, Living Building Challenge or other specific set of guidelines is not to achieve a certification to have in our portfolio. These programs provide standards that achieve a better quality home with high energy efficiency, interior spaces that are comfortable, have healthy air quality and are quiet, yield a durable home that has a lower carbon footprint and is kinder to the planet, along with a clear way to get there. They offer our clients, and us, a way to clarify preferences, priorities and possibilities. As an advocate of building in a sustainable way, we’re always on the lookout for techniques, technologies and materials that help us do a better job. And do it with little or no added cost over the way we would build or remodel any custom home. The more homes that are built in an environmentally sound fashion, the greater the demand for related materials and systems. That’s especially important on a local level. Think about the impact of transporting earth friendly materials across the country versus having them available through local suppliers. We’ve already had a breakthrough in that regard with Roxul rockwool that we used in a Carmel project. Hayward, based in Monterey, agreed to purchase a larger quantity, sell us the portion we needed and stock the rest for our future use and, hopefully, for other builders in the area.   It’s this kind of progress that will propel the movement of true sustainable building from a niche specialty to the way it’s always done. It’s a better way to build a higher quality home. Want to know more. Send me an email.

Water, water everywhere…and not a drop to waste.
Posted March 4, 2016 by Rob Nicely

Tis the rainy season and for the first year in several, we’re actually getting some rain. Time to replant the lawn, take those extra-long showers and run the dishwasher to clean a single plate. Hardly! These are extravagant (albeit a little exaggerated) luxuries that should never again become de rigueur. Let’s use this as an opportunity to create real change around water conservation. Even if—and it’s a BIG if—our area’s rainfall returns to normal levels over the next couple of years and our reservoirs are replenished, we can’t fool ourselves into thinking drought conditions won’t return. Fortunately, we’ve learned lessons—some the hard way—on how we can use less water especially for the non-necessities like the sprawling lawns of yesteryear. The market has produced water-saving toilets, showers, faucets and irrigation systems. And new technologies, like those that treat graywater for use in flushing toilets, are continuing to emerge. It’s no time to rest on our soggy laurels. It’s time to remain vigilant, and creative, about water conservation whether building or remodeling, and in daily life. So, put the rainy season to good use—read, study up, surf the Net, take a class through the local water resources agency—to learn more about the many ways to use water more wisely. And remember, when you conserve water, the lower water bills will put a little more green in your piggy bank. Thirsting for information? Send me an email.

Just me, thinking out loud
Posted December 21, 2015 by Rob Nicely

Anyone who has read a blog, sat in on one of my presentations or been a client of Carmel Building & Design knows that I’m passionate about sustainable building. The passion stems from a desire to take what I’ve learned about human impact on the environment over the past 25 years and apply it to my chosen profession. But, it’s not just a way to satisfy my need to address the larger issues that come with being environmentally mindful, it’s also a way to meet the needs of homeowners—like the need for healthier indoor air quality, quiet, durability, and energy and water conservation. And in the end, building in a way that’s better for the home’s occupants is also better for the planet.

These are not conclusions or practices that I’ve come to easily, nor alone. There are many forward thinkers who have contributed to the wealth of knowledge that’s available today. Often it’s a matter of trying things, taking steps then looking back to see if something can be improved to achieve an even better result. I admit that looking at the BIG picture can be overwhelming and trying to address all the problems out there can quickly stamp out the flame of activism. It’s important to start small, and start smart. Notice that START is the operative word.

Another realization I’ve come to is that it’s crucial to celebrate and take pride in every achievement regardless of scope or size. Sometimes I expend too much effort thinking about what I haven’t yet done versus what I’ve been able to accomplish. Every step we take in the right direction is reason for joy…nothing motivates most of us like the sense of having done something right, something good.

The reasons we decide to adopt a more planet friendly, sustainable lifestyle, don’t matter as much as the decision itself. One person might want healthier indoor air quality because there’s asthma or allergies in the family. Another might be looking to build or remodel a home that is more durable and has a better resale value. Another could be most concerned with lowering their carbon footprint, while yet another might focus more on energy and water conservation and reducing related costs. Whatever brings you to the table, be proud that you’re taking a seat, and a stand.

The building industry has a tremendous impact on reducing harmful carbon emissions through the homes, buildings and communities we design and build. At the November 13, Building Carbon Zero California conference in Palo Alto, keynote speaker Dr. Diana Ürge-Vorsatz spoke to the impact of the building industry on reducing the carbon emissions that fuel climate change. I’ll throw out a few facts that drive the point home:

  • In 2010, the building sector accounted for 32% of global energy use; 25% of energy related CO2 emissions; 51% of global electricity consumption…And in the U.S. that last figure was 70%!
  • Building-related emissions more than doubled since 1970; expected to double/triple again by mid-century.
  • It’s a fallacy that the power plants, not the buildings, are creating the problem. Buildings create demand for the energy that power plants produce. Our buildings need cooling and heating, lighting, etc. most coming from electricity. Globally, one-fifth of total energy used in buildings is heating/cooling. (In my experience, it’s higher in the U.S.)
  • The building industry plays a key role in bringing this total energy usage down.
  • Good design in residential building and retrofits can reduce heating/cooling energy use by 1/3 by mid-century, assuming that building floor area will at least double during same period, without sacrificing comfort.
  • Why retrofit or build to achieve only a 30-40% increase in efficiency, when we can employ available standards like Passive House and others and achieve a 90% increase in efficiency?
  • Passive House and other high-performance building standards need to become part of the building code, moving high-performance from a niche to a mass market.
  • Very high performance buildings can save as much as 60% of HVAC-related energy globally by 2050.

To see her presentation, visit, click on link under Highlights and go to Keynote presentation. The entire presentation on climate change is fascinating, but she gets to the heart of the building industry’s impact around 1:01 if you want to focus on that.

Over the next few months, I’ll be focusing blogs on positive outcomes, things that are being done to improve our state of living and nurture the health of the planet. Stay tuned. And feel free to send your questions, comments and suggestions to

The many benefits of air sealing
Reposted July 6, 2015 by Rob Nicely

It’s common knowledge that a good chunk of our energy costs go into heating and cooling our homes. And after we’ve conditioned the air to be at just the right temperature throughout the house, it all too often leaks out through seams, cracks and even the tiniest holes. This is not only a waste of energy, but dollars. In fact, leaks account for the biggest losses in both categories.

We’ve long used insulation as a way to increase energy efficiency, but if air is leaking in and out, even the best insulation simply can’t do its job. That’s where air sealing comes into play. While it’s possible, and advisable, to air seal an existing structure, this blog focuses on creating an air tight seal during the construction process. We’ve been doing it for a while now and are always discovering new processes, techniques and materials. For me, that type of “problem solving” is fun. I can get creative.

The first step in air sealing a home is to develop a strategy to seal what is basically a six-sided box, and there are tons of variables to consider. I start by looking at a cross-section of the plans and literally draw a red line where I think I can create an interrupted air tight boundary. It’s important to recognize and address the most challenging spots or transitions. These occur where the walls meet the floor, between the floor and underneath the house and where the walls join the roof at the eaves.

Once we’ve achieved our air tight boundary, we need to look at what are generally known as penetrations. These occur wherever there’s an opening, whether it’s for windows and doors, wiring, plumbing, cans for recessed lighting, electrical outlets and nail holes…anything that goes through the assemblies. We use a variety of materials including panels, tapes and membranes and liquid applied products, carefully sealing up the structure as we go along during the construction process. It’s much harder and much less cost effective to go back and try to plug leaks after the finishes are applied. Once the house is done, we use a number of tests to make sure we’ve caught everything. In the past few homes we’ve built, we passed the air leak tests on the first try. These tests generally involve pressurizing the house, then using an infrared camera and a smoke pencil to catch even the smallest leaks, especially those that can’t be detected by just feeling or looking for them.

The main types of sealing products and systems we currently use include Zip Wall, SIGA tapes and membranes and Prosoco liquid applied materials. Each one has its own purpose and we use all three in a typical project. Zip Wall, which comes with its own proprietary tape, is not only an air barrier on the home’s exterior, it is also a moisture barrier. SIGA tapes and membranes are used to seal seams, transition points and penetrations. Prosoco is a good choice for sealing around windows and other openings. It’s easily applied by brushing it on like paint or from a caulking gun and flattened out with a putty knife.

Air tight homes require mechanical ventilation—like the Zehnder Heat Recovery Ventilation unit we highlighted in our last blog and video—to ensure a supply of filtered, temperature controlled air. We also take care to avoid use of products that contain toxins known as VOCs found in conventional paints, glues, carpets and other finishes. Fortunately, with current and upcoming changes in the building code, more materials and systems are coming on the market all the time.

Not only does a properly sealed home reduce energy consumptions and related costs, it has the added benefits of improving indoor air quality, comfort and durability. It’s just a better way to build.

A fresh look at heating and cooling the home
Posted by Rob Nicely, Carmel Building & Design

Nothing gobbles up energy—and eats away at a homeowner’s budget—like heating and cooling the home’s interior. Considering the number of points in a traditionally-built home where air—along with the money you’ve spent to warm it up—leaks in and out, dad’s classic question of, “Are you trying to heat the outdoors?” comes to mind.

We’ll go into more detail about air sealing in another blog, but suffice it to say that this strategy has led to the need for innovative mechanical ventilation systems. In the past, mechanical ventilation wasn’t needed because homes were so leaky, but now that we’re building tighter structures, the building code requires it. In the last few homes we’ve built, we’ve chosen a heat recovery ventilation system (HRV). A HRV not only saves energy by reducing the amount of treated air that is wasted, it also improves indoor air quality.

The most important thing to understand about a heat recovery ventilation system is that it brings in fresh air and exhausts stale air, but it doesn’t let all of the heat in the outgoing air escape while it’s at it. A HRV, like the Zehnder Comfosystems unit that we’ve used in a number of homes, works like a radiator to pass most of the heat in the outgoing air to the incoming air rather than wasting the energy you’ve already used in heating it. This particular HRV unit is about 85 percent efficient. Simply put, that means that if the air going out of the house is 70 degrees and the air outside that’s coming in is 40 degrees, the HRV warms the air to about 65 degrees before it lets it into the house.

The incoming air passes through the HRV and goes on to a manifold. At the manifold, the air goes from a single big pipe to many smaller pipes, which in turn service all of the rooms that receive ventilated air. Usually this includes the main rooms like the living areas and bedrooms. Some rooms have return air vents. These are typically “wet” rooms like the bathrooms, laundry and kitchen from which stale, wet air is collected to be routed out of the house. The system also collects and exhausts excess moisture that might otherwise lead to mold and mildew.

This leads me to another benefit of a HRV—improved indoor air quality. By eliminating air leaks in the home and getting your fresh air from the ventilation system, you are ensuring that the indoor air you breathe is clean and healthy. As I said before, in an older house air is leaking in wherever it can find a way. A common scenario is that warm air, because it rises, will find a way to leak out up high, often through cracks between the wall and roof framing or through the cans around recessed lighting. The replacement air comes in from down low through leaks in the floor or bottom of the walls. This means that often the air you are breathing is coming from your crawlspace, most likely tainted with dust, mold spores, even the residue of pest sprays. By contrast, when you have a tightly sealed house and a HRV, the air you are breathing is coming from a known source and through a fine filter. You can choose filters based on your specific health needs and preferences.

A HRV ensures energy efficiency and a comfortable, healthy indoor environment in an air tight home.

Check out the accompanying video on heating and cooling.

A green way to insulate for extreme energy efficiency
Posted by Rob Nicely, Carmel Building & Design

Back in the ‘70s, California’s Title 24 revised the state’s building code to include limits for energy usage in built environments. The go-to solution for stemming the amount of energy required for heating and cooling quickly became insulation. For decades, the most frequently used type of insulation was fiberglass batt, laid between framing in walls and ceilings. To work effectively, insulation has to completely stop the movement of air. The fiberglass itself is not the insulation—it’s the material’s ability to trap air—known in the trades as the “dead air space strategy.” The primary challenges have been installing it in a way that completely fills all the cavities, and protecting the installers from skin rashes and breathing the harmful particles that escape during the process.

As an alternative, many of us turned to blown-in foam as insulation because it’s much better at perfectly filling the cavity. While foam does an incredible job of insulating and creating a thermal boundary, it also comes with drawbacks. The accelerant can be harmful to installers and special protective gear is required. It also produces greenhouse gasses that lead to depletion of the ozone layer.

Today, insulating is a “no brainer” in the building process. And we’re diverting that extra brain power into developing materials and strategies that are safer for people and the environment, yet significantly more effective. For insulation in our Carmel Point project, following protocols of the Living Building Challenge, we’re using two innovative products—blown-in cellulose and rock wool. Cellulose, made of at least 80% post-consumer paper waste, is blown into all the spaces between framing on interior walls and ceilings. It doesn’t require the harmful accelerants of blown-in foam. Rock wool, a by-product of steel smelting, is formed into rigid boards for insulation over exterior framing. On top of being a super-insulator, rock wool also repels water that can cause damage to the structure and negatively impact interior air quality, over time.

Products like these, and those to come in the future, turn waste into viable materials that keep us on the path of responsible, sustainable building.

Check out the accompanying video on insulation.

Hot water at any faucet in 3 to 5 seconds with as little as 1 cup wasted. Now that’s a HUGE improvement.
Posted by Rob Nicely, Carmel Building & Design

Studies show that the average home wastes more than 3,650 gallons a year waiting for the hot water to make it to the faucet. And about 15% of the energy used in conventional hot water delivery systems is wasted.1 That’s an unnecessary burden on your energy budget as well as on our area’s limited water supply and other natural resources.

In the Carmel Point home we’re building, following the Living Building Challenge, one of the solutions we’re using is a demand-controlled circulation system with what the industry calls “structured plumbing.” We like to call it “strategic plumbing.” Here are a few details of our strategic plumbing system:

  • One main ¾-inch PEX recirculation loop with short “twigs” rather than “branches” to each faucet
  • To maximize flow and minimize mixing of hot and cold water, this line is all sweeps and the only fittings are ¾ x ½-inch tees
  • Each tee supplies a fixture with hot water and each fixture has its own ½-inch supply line. The bathtub and clothes washer share a ½-inch line
  • All but one of the supply lines are less than 8-feet long containing about 1 cup of water
  • When a demand button is pushed or a motion sensor is triggered, the pump sends hot water through the recirculation loop at 4 to 6 GPM and shuts off when the hot water arrives at the last fixture in the loop, taking less than 2 minutes
  • Because of well-insulated pipes, the water in the loop remains above 105° for 30 to 40 minutes
  • A signal from another demand button or sensor will not trigger the pump until the water temperature falls below 105°
  • Wired demand buttons can be located at the entrance to the house, bedroom night stands and the kitchen; motion sensors may work best in the bathrooms, laundry and other locations to suit the owners’ patterns of use
  • There is nothing in this system that is outside the existing plumbing code

In every house we build, we look for ways to increase energy efficiency and reduce related waste and costs. Along with the Nexus system, this advanced hot water delivery system dramatically reduces both the energy used to heat the water and the amount of water wasted.


Check out the accompanying video on structured plumbing.

Unlocking the power of grey water
Posted by Rob Nicely, Carmel Building & Design

In every house we build, we look for ways to increase energy efficiency and reduce related waste and costs. In the Carmel Point home we’re building, following the Living Building Challenge, some solutions we’re using include an awesome water-to-water heat pump, demand-controlled circulation system and what the industry calls “structured plumbing.” Together, these systems dramatically reduce both the energy used to heat the water and the amount of water wasted.

Let’s talk first about the water heating system that’s a lot more than a heat pump. It’s called the Nexus Heat Recovery System. Used in Australia, Nexus was introduced in the U.S. a couple years back. It’s in a model home near Sacramento, but this is the first complete system installed in a residence in the U.S. We are excited about proving that such a “totally cool” system can work. Here are the highlights of this extraordinary and revolutionary system:

  • The system includes the NEXheater energy recycling water-to-water heat pump, the eWater Collector to collect grey water, NEXtreater grey water treatment system and the NEXservoir treated water storage tank. The grey water treatment system is expected to complete the testing process in December and be certified as a NSF 350 “onsite treatment system for non-potable grey water.” This certification is recognized by the County of Monterey Environmental Health Department.
  • The house was plumbed for separate grey water and black water drain systems, both terminating in the mechanical room. Grey water from the laundry, bathtub, showers and bathroom sinks will drain into the collection tank. The water heater will remove the heat from the grey water, then send the grey water to the treatment system. The treated water will be stored in a tank for exterior landscaping or non-potable use in toilets.

o When you take a shower or wash clothes the warm water goes down the drain

o The warm water is collected in the 75-gallon capacity grey water collector

o Because hot water from the water heater tank was used, it starts the heat pump process between the collector and the heater, pulling the heat back out of the warm grey water

o When that “batch” of warm grey water has brought the water heater temperature back up to 120° the grey water is sent to the treatment unit

o That batch of grey water is treated and sent to the treated water reservoir

o The treated water may be used to flush toilets or irrigate landscaping

o The system has the capacity to treat 200 gallons of grey water per day

o When you stop using the system at night, the cycle is completed leaving the water heater hot, the collector empty and the treated water waiting in the tank

o The cycle starts all over again the next time you use hot water

Check out the accompanying video on Nexus eWater.

Taking on the Living Building Challenge
Posted by Rob Nicely, Carmel Building & Design

We have to be the luckiest design/build firm ever. We have clients who not only want to incorporate sustainable building practices into their home, but they fully embrace the latest and highest standards. We’re currently working with a couple on a complete remodel of their Carmel Point home, applying the principles of Living Building Challenge (LBC) and aiming for LBC net zero energy certification.

LBC is not just a new way of building. It’s a new way of thinking and living that carefully considers and respects our finite natural resources and precious environment. It takes Passive House, LEED, Net Zero Energy and all other sustainable and green design and building practices into a completely different dimension. It’s an ideal, yet it has practical applications that we’re employing today. To say that we are learning a lot and excited about the opportunity to test new technologies, products and approaches would be an understatement.

On top of significantly reducing energy consumption and producing the remaining energy needed to run the house onsite, meeting the LBC challenge includes avoiding use of toxic materials included on their “Red List.” For things that we routinely use in construction—PVC, certain insulation materials, paints and finishes—we got creative and found viable alternatives.

This 2,000-square-foot ocean-side home will feature innovations like interior blown-in cellulose and exterior Rock Wool insulation—made from post-consumer newspapers and a by-product of steel smelting, respectively; finishes and fixtures from Green Goods—a company specializing in environmentally sound, non-toxic paints, cabinets, tiles and more. We’re also installing a breakthrough water heating system—the Nexus eWater system. It’s an energy recycling water heater that uses waste heat in the drain water from showers and laundry to heat water. After the system extracts the heat from grey water, it treats and stores water for use in the garden as well as interior non-potable functions like flushing toilets. An approach called “structured plumbing” will enable us to deliver hot water to any faucet in 3 to 5 seconds, wasting only about 1 cup of water.

We are well into this project and thought you’d enjoy following along. We’re also doing a series of short videos that we’ll be posting on You Tube that showcase different, unique processes and technologies we’re using for this home. We’ll post a link on our site and Facebook as soon as each one is ready for prime time.

What “green” really means
Posted by Rob Nicely, Carmel Building & Design

A couple quotes come to mind when I think about green building:

“Sustainable development involves meeting the needs of the present without compromising the ability of future generations to meet their own needs.” (Earth Summit, Rio De Janeiro, 1992)

“By making smarter choices about how you build and the products you use, you can significantly contribute to the health, wealth and well-being of yourself, your family, your community, and the world.”

As green building continues to become more mainstream, we are deluged with definitions of “green.” Be it through the media, trade publications or discussions with friends, it’s likely that the info is confusing or contradictory.

With this in mind, let’s review the basic terms. The notion of green building (or the green economy, or the green anything) is based on the concept of sustainability. A sustainable system is one that can go on forever, where the inputs are renewable and their acquisition doesn’t degrade the related environment.

The movement toward green products and methods reflects a widespread recognition that we can’t go on doing things the way we—as a society—have done in the past. With more than seven billion people on Earth, and our radically increased ability to process and consume resources, it’s due time that we rethink and retool.

Green building is our industry’s response to finding ourselves at this peculiar point in human history. To help you sort out whether a proposed practice or product is legitimate vs. “green washing,” here is a short list of things to consider when pondering “green-ness”:

  • Energy and Atmosphere—How much energy went into the production and shipping of the product? Did the manufacturer use renewable energy sources and work diligently to reduce energy usage? Was the product shipped from far away (using more energy) or was it made close to where you’ll use it? If it is an electronic or other energy-dependent device, how much will it use during its lifetime? Is it efficient relative to alternatives? These questions impact the “carbon footprint” of that item and, hopefully, your decision to purchase it. The over-arching idea is to choose ways of fulfilling your needs that use as little fossil fuel and other non-renewable resources as possible.
  • Materials and Resources—When it comes to materials and resources, the idea is to limit the use of non-renewable materials, those with a large carbon footprint and anything that’s extracted in a way that does damage to natural systems. As an example from our industry, we try to incorporate as much engineered lumber as possible. This lumber can be made with smaller, less mature trees that are more abundant and easier to replace than mature trees. Products that incorporate recycled content do less damage to the environment. Another important consideration is product disposal. Can it be recycled or easily re-enter the system after its use? Or, does it contain toxins that make it difficult or impossible to re-introduce into the eco-system? An example from the past that we continue to deal with today (and will forever) are materials that contain asbestos and lead. When these materials were first introduced, we didn’t know (or maybe care) about the harm they would cause. Today, disposing of these materials is incredibly complicated. We have to hire someone to assess the level of hazard, then another person who is certified to take and dispose of it as safely as possible. Carpet is a more contemporary example. Elements of carpeting, like the glue, are toxic and some materials don’t break down. Typically, the entire carpet is thrown out. Because nylon doesn’t degrade and other components are toxic, it can’t be reused as a consumer product and doesn’t easily re-enter the eco-system. And this leads to my next point…
  • Toxins and Indoor Air Quality—In construction, it has been common practice to use products containing toxins that “off-gas” into your home, potentially affecting your health. And after the useful life of the product, that toxicity will have to be dealt with as it returns to some other part of the environment.
  • Water Conservation—I add this because, a) water is so precious in our region and its availability increasingly impacts our lives in many ways, and b) there is an important link between water conservation and energy conservation. It takes a lot of energy just to get the water to your home. And once it’s there, it takes even more to heat it and pump it to faucets. On top of using less water, it helps to properly insulate pipes and not to waste water that’s already been heated.

This is a lot to consider, but I hope it helps you sort out what “green” really means.

Growing for the future—the sustainably managed forest
Posted by Rob Nicely, Carmel Building & Design

It wasn’t until I visited the 94,000-acre Collins Almanor Forest near California’s Mount Lassen a few years back that I understood what “sustainably managed” means. For the Collins Pine company, it has been a way of doing business since they started timber operations in 1941 on land they began acquiring as far back as 1902.

From the get-go, they used a “sustained yield” management strategy, essentially meaning that harvesting is done in a way that doesn’t hamper the forest’s continued growth. To do this, they estimated how much timber was there when they started. Then they implemented a cutting strategy that allowed them to harvest trees without damaging the ecology of the area or diminishing the future potential yield of the forest. By 2009, after they had harvested about 1.5 billion board feet of lumber, they still had resources left to harvest for another 70 to 80 years. The company’s sustainable use of the land has earned it status as one of the premier Forestry Stewardship Council (FSC) operations in the U.S.

FSC has risen from the alphabet soup of certifying bodies as the only one that represents real accountability in forestry practices—it tracks and certifies the product from the time it was a tree until it reaches the construction site, paper mill or other production site. All three Collins forests—Almanor, Pennsylvania and Lakeview, that together span 314,000 acres—have been independently certified by SCS global Services in accordance with FSC standards and policies.

Until I visited this forest, FSC was one of the abstract concepts that buzzed around in my head when thinking about “green building.” Jay Francis, forest manager for Collins Pine Company, took us to a sustainably harvested forest as well as one that was clear-cut (a common practice in conventional timber operations). We also visited a forest that was unmanaged or “wild.” Trust me, the unmanaged forest was nothing like those described by early settlers—open and park-like, with plenty of light filtering in and space to accommodate their wagons. Today, unmanaged forests are characterized by a buildup of dead limbs and leaves—increasing the danger of catastrophic fire—and a glut of undergrowth that chokes out sunlight and keeps grasses and other plants from thriving. Not to mention that this diminishes available food for herbivores who call the forest home.

One reason “unmanaged” doesn’t equal “natural” is that we’ve changed the relationship between the forest and fire. Before the West was populated, the forest would burn periodically due to spontaneous fires sparked by lightning or to Native Americans starting fires to maintain the health of the habitat. It’s also important to note that when fires burn periodically (every 15 years or so), the fuel load is controlled and fire doesn’t become the traumatic event that it is today.

This experience really opened my eyes. I never imagined the depth of knowledge and level of engagement with the forest required to produce the materials we need, while nurturing the health of the resource. Now, it seems like a no-brainer to choose FSC whenever possible for lumber, paper and other wood products, especially when much of it can be had at the same or close to the same price. For more info, check out

Every day should be Earth Day
Posted by Rob Nicely, Carmel Building & Design

Here are ten things we can all do to celebrate Earth Day, starting now and all year long.

1. Buy local—whenever possible, opt for items that are produced or grown near you. They require less transportation and the related impacts on the environment.

2. Lose the leaks—check ductwork, windows, doors and indoor/outdoor plumbing for leaks. Small fixes can mean big savings in water and heating/cooling costs as well as make for a more comfortable and healthier indoor environment.

3. Think twice before you toss—ask yourself…Can I find a new use for it? Can I recycle it? Can I donate it? Can I compost it? When you answer “yes” and take action, you help reduce the vast amounts that go into landfills.

4. Get growing—whether in pots on a patio, balcony or porch or in a patch of land, use whatever space you have to grow your favorite herbs and veggies.

5. Make the switch—keep a supply of reusable bags handy for shopping. And don’t forget to take them into the store.

6. Take steps—benefit your health as well as the planet by walking or biking instead of driving when you can.

7. Ditch the disposables—Treat yourself to reusable mugs, glasses, water bottles and other containers to cut down on the amount of trash from single use items.

8. Green up—take a little time out of your busy schedule to explore websites (including ours) for ideas on greener living, and re-greening your home.

9. Get involved—volunteer for a cleanup day. Pick up and dispose of trash when you see it rather than walking on by.

10. Save your energy—sign up for a home energy audit. You might be surprised at the money, and natural resources, you can save. You’ll get a list of strategies to choose from as your time and budget allow.

Indoor air quality
Posted by Rob Nicely, Carmel Building & Design

Long after the 2005 Hurricane Katrina disaster, there are still many lessons to be learned. More than 143,000 families were moved into trailers provided by FEMA, and many of them immediately fell ill. Investigators found that particleboard used in the cabinets and other interior finishes was off gassing so much formaldehyde that the interior air was toxic. Besides causing acute symptoms such as burning eyes, coughing, sore throat, and bloody noses, breathing formaldehyde raises the risk of cancer and chronic respiratory disease.

This is an extreme example of a phenomenon we must be concerned with any time we create interior living spaces. Many of the products manufactured for building applications contain formaldehyde and other volatile organic compounds (VOCs) that off-gas into the air. Along with mold—caused largely by use of poor construction methods—these chemicals contribute to unhealthy indoor living conditions and even result in acute or chronic health problems, especially for children, the elderly and people with compromised immune systems.

Luckily, there are many products and methods available for creating healthier homes. An alternative to urea-formaldehyde glue is being used in the manufacture of competitively priced plywood and particleboard. And there are many low- or no-VOC paints and finishes on the market. Formaldehyde-free insulation is also widely available. Construction methods that create a sound, moisture-free building envelope can eliminate most molds.
These examples are some of the reasons we’re so passionate about building in ways that benefit occupants as well as our planet. Our design principles and building practices always incorporate environmentally mindful features that improve indoor air quality, enhance value, reduce energy and maintenance costs and are easy on the planet—regardless of whether or not we’re going for a certification.

The evolution of insulation
Posted by Rob Nicely, Carmel Building & Design

Back in the ‘70s, California’s Title 24 added the use of energy in built environments to the building code. Insulation was deemed a primary way of reducing the amount of energy used for heating and cooling. While insulating has become a routine part of the building process, we are still working on the most effective and safe materials and installation strategies. Historically, fiberglass batt has been the most frequently used type of insulation, but with several drawbacks—it causes skin rash and itching and it is harmful to breathe the particles that escape during installation. And there is no “perfect” way to install it. To actually do what it’s supposed to do, insulation has to completely stop the movement of air…the fiberglass isn’t the real insulator, it’s the air trapped by it—known in the trades as the “dead air space strategy.”  Today, many of us have turned to blown-in insulation using fiberglass or foam as an alternative strategy. While I’ve used foam over the past few years due to its ability to create a solid thermal boundary, I’ve not given up on finding healthier, even more effective options. There are new things on the market—like cellulose and rock wool. Made of at least 80% post-consumer paper waste, blown-in cellulose creates a good seal. Rock wool, a by-product of steel smelting operations, looks a lot like cellulose. The cool thing about rock wool is that it can also be used as rigid boards on the outside of framing. On top of being a super-insulator, it also repels water. And it’s a planet-friendly alternative to foam insulation. We’re using it on our Carmel Point project that’s aiming for certification by Living Building Challenge. Products like these, and those to come in the future, turn waste into viable materials that keep us on the path of responsible, sustainable building.

Be a part of the solution
Posted by Rob Nicely, Carmel Building & Design

When it comes to protecting our natural resources and natural wonders that attract tourists from around the world, pumping up the local economy and coming up with real solutions, people often ask, “How can I get involved?” One powerful way is through the Monterey County Business Council. MCBC is an alliance of businesspeople and professionals who work together on countywide issues involving the environment, economic vitality and quality of life. The work is broken down into “Competitive Clusters” or C2 for short. I’m proud to co-chair the Sustainable Building & Innovation C2 with Dan Fernandez. We meet the third Wednesday of each month at the Monterey College of Law, 3:30 to 5:00 to tackle some of the challenges facing our communities. There are several initiatives underway that address responsible disposal of construction materials, use of grey water, storm water management and more. It’s inspiring to see the growing interest in coming up with workable solutions. They’re out there. We just have to harness them and put them into action. Everyone is welcome to our meetings. It’s a great way to learn about all the exciting things going on behind the scenes in Monterey County, and how you can be part of the solution. For more information, check out and

Some thoughts on “green” certifications
Posted by Rob Nicely, Carmel Building & Design

There are many certification programs that recognize environmentally mindful design and building, including Passive House, LEED, Zero Net Energy and Living Building Challenge. Certifications provide a road map to achieving specific goals. But it doesn’t have to be an all-or-nothing proposition. Little steps in the “green” direction really do make a difference. The most important thing any of us can do is to start learning more about, and embracing, the many options for “green” design, building and living.

Each home, each project offers different challenges and opportunities that require an innovative approach. Every day, we’re learning new techniques to achieve extreme energy efficiency and create healthier indoor environments. Finding ways to use more materials that are low/no VOC, sustainably grown, recycled, reclaimed and recyclable. And dedicating ourselves to ensuring each client has a home that’s durable, comfortable and functional, and supports their commitment to “green” living.

Whether you’re a homeowner, designer, architect, builder or simply have an interest in our impact on the planet, you can make a difference.

Advanced Framing Techniques save energy, money, and the planet.
Posted by Rob Nicely, Carmel Building & Design

Advanced Framing Techniques (aka Optimal Value Engineered Framing) have been around since the late ‘70s, but have been slow to make the mainstream of the building industry. Until now. We’re happy to report that a growing number of builders are embracing these techniques. And for many good reasons.

• Does away with framing materials (about a 20% reduction) that serve no structural purpose, reducing waste and costs.

• For every piece of unneeded lumber, builders pay three times—to purchase, to move around and to recycle or send to the landfill.

• It’s a smarter use of wood, saving trees and forests.

• Many techniques improve air sealing and reduce drywall cracking, saving on labor and repair costs.

• Leaves additional room for insulation and eliminates cold spots, making the house more comfortable and energy efficient. Heat moves through wood four times faster than standard insulation materials, causing thermal bridging.

There’s a lot of interesting and useful info out there. The point is to start the journey to smarter, more environmentally mindful building. Otherwise we’ll never get there.

Sites to check out: and